Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To evaluate the effect of naringenin on improving PCOS and explore the mechanism.

Methods: Firstly, we carried out differential gene expression analysis from transcriptome sequencing data of human oocyte to screen the KEGG pathway, then the PCOS-like rat model was induced by letrozole. They were randomly divided into four groups: Normal group (N), PCOS group (P), Diane-35 group (D), and Naringenin group (Nar). The changes of estrus cycle, body weight, ovarian function, serum hormone levels, glucose metabolism, along with the expression of SIRT1, PGC-1ɑ, claudin-1 and occludin of the ovary and colon were investigated. Furthermore, the composition of the gut microbiome of fecal was tested.

Results: By searching the KEGG pathway in target genes, we found that at least 15 KEGG pathways are significantly enriched in the ovarian function, such as AMPK signaling pathway, insulin secretion, and ovarian steroidogenesis. Interestingly, naringenin supplementation significantly reduced body weight, ameliorated hormone levels, improved insulin resistance, and mitigated pathological changes in ovarian tissue, up-regulated the expression of PGC-1ɑ, SIRT1, occludin and claudin-1 in colon. In addition, we also found that the abundance of Prevotella and Gemella was down-regulated, while the abundance of Butyricimonas, Lachnospira, Parabacteroides, Butyricicoccus, Streptococcus, Coprococcus was up-regulated.

Conclusion: Our data suggest that naringenin exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota and SIRT1/PGC-1ɑ signaling pathway. Our research may provide a new perspective for the treatment of PCOS and related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113286DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
gut microbiota
8
kegg pathway
8
body weight
8
ovarian function
8
hormone levels
8
treatment pcos
8
naringenin
5
pathway
5
naringenin regulates
4

Similar Publications

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).

View Article and Find Full Text PDF