Mass spectrometry-based profiling and imaging strategy, a fit-for-purpose tool for unveiling the transformations of ginsenosides in Panax notoginseng during processing.

Phytomedicine

The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shan

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Panax notoginseng, a valuable medicinal plant, is traditionally used to treat trauma, body pain, and cardiovascular diseases in two clinical forms including raw (crude) and processed form. Processing-triggered compound transformation is responsible for the distinct bioactivity between raw and processed Panax notoginseng. Nevertheless, investigating the chemical diversity and dynamic transformation pattern of processed Panax notoginseng is challenging.

Methods: A new approach, which integrates multi-components characterization, processing trajectory depiction, discovery of differential markers, transformation mechanism of metabolites, in situ spatial distribution and transformation of metabolites, was established to elucidate the role of processing on the holistic chemical transformations of Panax notoginseng (PN).

Results: In this study, 136 ginsenosides (mainly rare ginsenosides) were identified or tentatively characterized and the temperature-dependent chemical variation trajectory was depicted via principal component analysis (PCA). Nineteen processing-associated markers were confirmed by orthogonal partial least squares-discriminant analysis (OPLS-DA). For the first time, the transformation pathway of ginsenosides during processing were elucidated by integrating the precursor ion scan (PIS) and mimic processing strategy that involves with deglycosylation, dehydration, hydration, acetylation, and isomerization. Results of mass spectrometry imaging (MSI) revealed the major ginsenosides M-Rb1, R1, Rg1, Rb1, Rd, and Re exhibited distinct spatial distribution pattern that are highly abundant in the xylem and showed a downward trend during processing. We firstly depicted the spatial distribution of processing-triggered rare ginsenosides (Rg3, Rk1, Rg5, etc.), and in situ transformation of ginsenosides was discovered in the process of steaming. Additionally, this variation trend was consistent with untargeted metabolomics results.

Conclusion: This study comprehensively revealed chemical diversity and dynamic transformation pattern and depicted the spatial distribution of ginsenosides of PN during processing. It could provide a clue for the distinct bioactivities between raw and processed PN and elucidate the role of processing on the holistic chemical transformations of natural products, more importantly, the proposed strategy is valuable for the quality evaluation and control of the processing of natural product.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154223DOI Listing

Publication Analysis

Top Keywords

panax notoginseng
20
spatial distribution
16
processing
9
ginsenosides
8
raw processed
8
processed panax
8
chemical diversity
8
diversity dynamic
8
dynamic transformation
8
transformation pattern
8

Similar Publications

Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from , and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated.

View Article and Find Full Text PDF

Mortierella alpina bioinoculant potentiates native microbiota for soil borne disease suppression in Panax notoginseng cultivation.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad

Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

Development of three-dimensional boronate affinity dendritic mesoporous silica coupled with HPLC-CAD for selective determination of ginsenosides.

Mikrochim Acta

September 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound

The precise and selective determination of ginsenosides, pharmacologically diverse saponins abundant in Panax species, is crucial for their therapeutic development and stringent quality control. However, inherent challenges, including their weak ultraviolet absorption and the high polarity imparted by sugar moieties, complicate their determination. Addressing these limitations, this study introduces the first-time construction and application of a boronate affinity dendritic mesoporous silica nanomaterial (BA-DMSN) as a highly efficient adsorbent for ginsenoside pretreatment.

View Article and Find Full Text PDF

Biological detoxification and application of emerging control strategies of zearalenone in food.

Food Chem

August 2025

Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Electronic address:

Zearalenone (ZEA) is a mycotoxin produced by filamentous fungi of the Ascomycota phylum, widely present in grains such as corn and wheat. The global contamination of ZEA is becoming increasingly severe, with a significant rise in its detection rate in grains and animal feed, posing serious threats to the health of livestock and poultry, the safety of processed grain products, and human health. This paper reviews the residual risks of ZEA, particularly its significant effects on the reproductive system and liver.

View Article and Find Full Text PDF