98%
921
2 minutes
20
Antimicrobial resistance is an alarming problem, especially due to emergence of methicillin-resistance Staphylococcus aureus (MRSA). World Health Organization (WHO) has already listed MRSA as a top priority pathogen for the development of novel antibacterial agents. Presently, different therapeutic approaches against bacterial infections are in practice which includes targeting bacterial virulence factors, bacteriophage therapy, and manipulation of the microbiome. Natural products have been efficiently used for centuries to combat bacterial infections. Morchella is a natural fungal product which has been reported to possess broad-spectrum biological activities against bacterial infections. Hence, this study was aimed to evaluate the antibacterial efficacy of two macro-fungi against S. aureus, MRSA, and Streptococcus pyogenes (S. pyogenes). The antibacterial potential of both fungal extracts (Morchella esculenta and Morchella conica) was evaluated using disk diffusion and standard broth microdilution methods. The chemical compounds of both fungi were investigated using ultra-performance liquid chromatography mass spectroscopy (UPLC-MS) analysis. All fungal extracts inhibited growth of tested bacteria with inhibitory zone ranging from 10.66 ± 0.3 to 21.00 ± 1.5 mm. The minimum inhibitory concentration (MIC) of tested bacterial growth ranged from 03.33 to 16.0 mg/ml. It was noteworthy that Morchella extracts prevented S. aureus growth in a bactericidal manner with minimal bactericidal concentration (MBC) of 8-16 mg/ml. The extracts were also more effective against MRSA than currently available antibiotics. In conclusion, the growth inhibition of tested bacteria by fungal extracts revealed their potential as antibacterial agents and their compounds may be used as drug candidates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-022-03003-8 | DOI Listing |
Pestic Biochem Physiol
November 2025
Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.
The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.
View Article and Find Full Text PDFAm J Infect Control
September 2025
Department of Food Science, 745 Agricultural Mall Drive, Purdue University, West Lafayette, IN USA 47907. Electronic address:
Background: Manual wiping of surfaces, a primary method in preventing hospital acquired infections, can vary significantly in its ability to eliminate bacteria and prevent cross-contamination.
Methods: Four liquid-based cleaning and disinfecting formulations comprised of hydrogen peroxide (HP), ethoxylated alcohol (EA), quaternary ammonium compounds (Quat and Quat2), or a water-based control were evaluated for their bactericidal efficacy in combination with three different wiping materials: microfiber, polypropylene, and cotton. Each chemistry and wipe combination were evaluated for its ability to reduce microbial contamination on a hard, non-porous surface measuring one meter.
Eur J Pharm Sci
September 2025
Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary. Electronic address:
Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China. Electronic address:
This study reported a modified hydrothermal solvent method for preparing lignin microspheres (LNSs) with controllable size and morphology by precisely regulating the reaction temperature (160-220 °C). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to evaluate the structure, morphological, and dimensional attributes of lignin microspheres, and the synthesis mechanism was discussed. The antibacterial efficacy of the hydrothermally treated lignin microspheres (HTLNSs) was evaluated through phosphate-buffered saline (PBS) culture assays, as well as by assessing nucleic acid and protein leakage, and their inhibitory effect on cell membrane permeability.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
The emergence of antimicrobial resistance poses significant challenges in conventional antibiotic treatments for chronic wound infections, highlighting an urgent need for alternative therapeutic strategies. To address this issue, we developed a multifunctional electrospun nanofiber dressing co-loaded with anthocyanin (ATH) and asiaticoside (AS) that possesses antimicrobial activity. The tri-layer dressing contains three functional components: a hydrophilic polyacrylonitrile-anthocyanin (PAN-ATH) layer for pH monitoring, a hydrophobic polycaprolactone (PCL) layer for exudate management, and a water-soluble pullulan-Bletilla striata polysaccharide-asiaticoside (PUL-BSP-AS) layer.
View Article and Find Full Text PDF