98%
921
2 minutes
20
Hemiboreal and boreal forests growing at the southern margin of the permafrost distribution are vulnerable to climate warming. However, how climate warming threatens the growth of dominant tree species that are distributed on permafrost remains to be determined, particularly in synchrony with warming-induced permafrost degradation. Tree growth in the permafrost region of southern Siberia was hypothesized to be highly sensitive to temperature increasing and warming-induced permafrost degradation. To test this hypothesis, we sampled the tree ring width of 535 trees of dominant species, larch (including Larix gmelinii and L. sibirica) and white birch (Betula platyphylla), in ten hemiboreal to boreal forest plots within different permafrost zones. The relationships between the tree ring basal area index (BAI) and temperature, precipitation, and the Palmer drought severity index (PDSI) were compared among plots located in two permafrost zones. In the isolated permafrost zone, white birch grows better than larch and is not drought-stressed (p < .05). We suggest that the deep-rooted white birch benefits from the water from thawing permafrost, while the growth of the shallow-rooted larch is stressed by drought. In the sporadic discontinuous permafrost zone, both white birch and larch benefited from permafrost melting, but the sensitivity of larch growth to PDSI is still significant (p < .05), indicating drought is still an important climatic factor limiting the growth of larch. Our results imply that the permafrost degradation caused by climate warming affects tree growth by creating the root layer additional water source. In the future, it is necessary to focus on monitoring permafrost degradation to better predict forest dynamics at the southern margin of the permafrost distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16284 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Colorado State University, Department of Forest and Rangeland Stewardship, Fort Collins, CO 80523.
The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Geography, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, 700505, Iasi, Romania.
Permafrost degradation is accelerating across the Arctic, posing growing risks to cultural heritage (CH) sites. This study presents the first archipelago-scale hazard assessment of CH to retrogressive thaw slumps (RTS) and thermo-erosion gullies (TEG) in Svalbard, one of the fastest-warming regions globally. By overlaying recent RTS and TEG inventories with the spatial distribution of protected CH sites, we quantify hazard exposure for 55.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada.
Permafrost thaw in peatlands risks increasing the production and mobilization of methylmercury (MeHg), a bioaccumulative neurotoxin that poses a health hazard to humans. We studied 12 peatlands on a trophic gradient in northwestern Canada, including permafrost peat plateaus and thawed bogs and fens, to determine the effects of thaw on MeHg production from measures of soil and porewater MeHg and in situ methylation assays. The production of MeHg was greater in thawed peatlands, especially rich fens, as indicated by higher potential rates of microbial methylation of inorganic mercury (Hg) to MeHg and higher soil %MeHg (MeHg:total Hg).
View Article and Find Full Text PDFSci Adv
August 2025
Department of Physical Geography, Stockholm University, Stockholm, Sweden.
The dynamics of atmospheric CO concentrations during and following the last deglaciation have mainly been ascribed to carbon release from and uptake in oceans, primarily in the Southern Ocean. But recent studies also point toward a terrestrial influence. We quantify dynamic changes to northern terrestrial carbon stocks from the Last Glacial Maximum (21,000 years) until present at millennial time steps using a combination of paleo-data and climate-biome modeling.
View Article and Find Full Text PDFEnviron Pollut
August 2025
Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal; Centre for Northern Studies, Université Laval, Québec, QC, Canada. Electronic address: joao.cana
Mercury (Hg) is a natural occurring element but is often emitted from anthropogenic sources and reaches the Arctic via long-range atmospheric transport. Organic matter (OM)-rich thermokarst lakes are characteristic features of the permafrost landscape in this region, where monomethylmercury (MMHg) production can be enhanced, as this process is mainly carried out by prokaryotes. To better understand the complex Hg biogeochemical cycle, two distinct thermokarst lakes (SAS 1A and SAS 2A) in sporadic permafrost in the Sasapimakwananistikw (SAS) River Valley, Canadian Subarctic, were sampled during winter and summer of 2022.
View Article and Find Full Text PDF