98%
921
2 minutes
20
Oxidative attack leads to the oxidative aggregation and structural and functional feature weakening of soybean protein. We aimed to investigate the impact of ultrasonic treatment (UT) with different intensities on the structure, emulsifying features and interfacial features of oxidized soybean protein aggregates (OSPI). The results showed that oxidative treatment could disrupt the native soy protein (SPI) structure by promoting the formation of oxidized aggregates with β1-sheet structures through hydrophobic interactions. These changes led to a decrease in the solubility, emulsification ability and interfacial activity of soybean protein. After low-power ultrasound (100 W, 200 W) treatment, the relative contents of β1-sheets, β2-sheets, random coils, and disulfide bonds of the OSPI increased while the surface hydrophobicity, absolute ζ-potential value and free sulfhydryl content decreased. Moreover, protein aggregates with larger particle sizes and poor solubility were formed. The emulsions prepared using the OSPI showed bridging flocculation and decreased protein adsorption and interfacial tension. After applying medium-power ultrasound (300 W, 400 W, and 500 W) treatments, the OSPI solubility increased and particle size decreased. The α-helix and β-turn contents, surface hydrophobicity and absolute ζ-potential value increased, the structure unfolded, and the disulfide bond content decreased. These changes improved the emulsification activity and emulsion state of the OSPI and increased the protein adsorption capacity and interfacial tension of the emulsion. However, after a high-power ultrasound (600 W) treatment, the OSPI showed a tendency to reaggregate, which had a certain negative effect on the emulsification activity and interfacial activity. The results showed that UT at an appropriate power could depolymerize OSPI and improve the emulsification and interfacial activity of soybean protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149199 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2022.106046 | DOI Listing |
Vet World
July 2025
Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
Background And Aim: The search for sustainable and cost-effective protein alternatives to soybean meal in livestock diets has led to the exploration of legumes such as faba beans [FBs] ( L.). This study investigated the effects of dietary inclusion of FBs on carcass traits, meat quality, and selected blood parameters in Awassi lambs.
View Article and Find Full Text PDFAnn Bot
September 2025
The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.
Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.
Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.
Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.
Curr Biol
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia.
A new study shows that sucrose allocation within soybean roots by the sucrose transporter GmSWEET3c promotes rhizobial infection, nodulation, and symbiotic nitrogen fixation.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
Herein, we present a simple and novel method to prepare soybean protein isolate (SPI)-based hydrogels with good mechanical characteristics. First, SPI/DSA hydrogels were prepared using SPI and different M/G ratios (1:2, 1:1, and 2:1) of dialdehyde sodium alginate (DSA). Then, the hydrogels were immersed in CaCl2 solution to form SPI/DSA@Ca double network hydrogels.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
For recovering whey soybean protein (WSP) from soybean whey wastewater (SWW) in food industry, a foam separation method for separating WSP by using temperature-responsive Janus sheets (MF-JNSs-PN) as foam stabilizer was established. MF-JNSs-PN was prepared by grafting the temperature-responsive polymer PNIPAM onto one side of the sheet inorganic material using BSA@Cu(PO)-MF as the template. MF-JNSs-PN has a good ability to stabilize the foam due to inducing the hydrophilicity and hydrophobicity transition by adjusting the temperature.
View Article and Find Full Text PDF