Temporally Evolving and Context-Dependent Functions of Cytokines That Regulate Murine Anti- Humoral Immunity.

Pathogens

Department of Microbiology and Immunology, Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, USA.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protective immunity against blood-stage infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell-cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144513PMC
http://dx.doi.org/10.3390/pathogens11050523DOI Listing

Publication Analysis

Top Keywords

humoral immunity
8
helper cells
8
cells cells
8
cells
6
temporally evolving
4
evolving context-dependent
4
context-dependent functions
4
functions cytokines
4
cytokines regulate
4
regulate murine
4

Similar Publications

Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.

View Article and Find Full Text PDF

Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF