98%
921
2 minutes
20
Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202202509 | DOI Listing |
Research (Wash D C)
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.
View Article and Find Full Text PDFDalton Trans
September 2025
School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China.
In this paper, we design and study a temperature-controlled switchable terahertz perfect absorber based on vanadium dioxide (VO), which shows excellent multi-band performance, high sensitivity and intelligent thermal management. The device consists of four layers in a metal-dielectric composite structure, which are a metal reflection layer, silicon dielectric layer, VO phase change layer and top metal pattern layer from bottom to top. The simulation results show that when VO is in the low-temperature insulation state, the absorption rate of the device is as high as 99.
View Article and Find Full Text PDFSci Rep
September 2025
Faculty of Physics, University of Tabriz, Tabriz, 51665-163, Iran.
Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
This study presents a biosensor based on cleaved graphene, compared with a graphene-gold nanoparticle structure, for detecting carcinoembryonic antigen (CEA), leveraging graphene's tunable resonance frequency and the structure's polarization-independent performance. This sensor consists of three layers: a gold substrate with a conductivity of 4.7 × 10, a silicon dioxide (SiO) dielectric layer with a permeability of 3.
View Article and Find Full Text PDFSci Rep
August 2025
Faculty of Technology and Education, Sohag University, Sohag, Egypt.
In this work, the design and construction of a metamaterial (MTM) absorber to increase solar cell efficiency is proposed. MTM is use as frequency selective surface (FSS) in the infrared band. The design is made up of a split ring resonator (SRR) imprinted on the substrate's top surface, with a copper layer serving as a ground on the back layer of the substrate material.
View Article and Find Full Text PDF