98%
921
2 minutes
20
Heparin, the most widely used anticoagulant drug in the world today, suffers from the risk of overdose and a short serum half-life, limiting its clinical applications. Concerning the controlled, sustained, and targeted release of heparin, a delivery system was fabricated in this research using the layered composites of FeO magnetic particles and pH-sensitive metal-organic framework, FeO@ZIF-8. The composite demonstrated a high loading capacity for the heparin, 66.8 mg/g. The composite had a saturation magnetization of 1.5 emu/g and thus owned a magnetic targeting function, i.e. drug can be centered at a certain point using an external magnetic field. The anticoagulant activity was assessed by monitoring their activated partial thromboplastin time. The results showed that the pH-responsive and sustained release of the heparin reduced the systemic adverse effects associated with high concentrations. Moreover, control over the dose exhibited excellent anticoagulant features with fewer side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112555 | DOI Listing |
Acc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Chemical Sciences & Technology, School of Materials and Energy, Yunnan Provincial Center of Technology Innovation for New Materials and Equipment in Water Pollution Control, Yunnan Institute of Frontier Technologies in Water Treatment, Yunnan University, Kunming 650091, P. R. China. jqwang
In this work, a novel organic heterojunction of polydopamine (PDA)@covalent organic framework (COF) was efficiently synthesized the sonochemical method, leveraging the multifunctional properties of PDA as nucleation sites for COF shell (sonoTp-TAPB) growth. The as-prepared PDA@sonoTp-TAPB hierarchical structure delivers a photocatalytic HO production rate of 728.4 μmol g h in pure water.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, China.
This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.
View Article and Find Full Text PDF