Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A wearable textile that is engineered to reflect incoming sunlight and allow the transmission of mid-infrared radiation simultaneously would have a great impact on the human body's thermal regulation in an outdoor environment. However, developing such a textile is a tough challenge. Using nanoparticle-doped polymer (zinc oxide and polyethylene) materials and electrospinning technology, we have developed a nanofabric with the desired optical properties and good applicability. The nanofabric offers a cool fibrous structure with outstanding solar reflectivity (91%) and mid-infrared transmissivity (81%). In an outdoor field test under exposure of direct sunlight, the nanofabric was demonstrated to reduce the simulated skin temperature by 9 °C when compared to skin covered by a cotton textile. A heat-transfer model is also established to numerically assess the cooling performance of the nanofabric as a function of various climate factors, including solar intensity, ambient air temperature, atmospheric emission, wind speed, and parasitic heat loss rate. The results indicate that the nanofabric can completely release the human body from unwanted heat stress in most conditions, providing an additional cooling effect as well as demonstrating worldwide feasibility. Even in some extreme conditions, the nanofabric can also reduce the human body's cooling demand compared with traditional cotton textile, proving this material as a feasible solution for better thermoregulation of the human body. The facile fabrication of such textiles paves the way for the mass adoption of energy-free personal cooling technology in daily life, which meets the growing demand for healthcare, climate change, and sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c05115DOI Listing

Publication Analysis

Top Keywords

human body's
8
cotton textile
8
human body
8
nanofabric
7
radiative cooling
4
cooling nanofabric
4
nanofabric personal
4
personal thermal
4
thermal management
4
management wearable
4

Similar Publications

Bridging the Gut Microbiota and the Brain, Kidney, and Cardiovascular Health: The Role of Probiotics.

Probiotics Antimicrob Proteins

September 2025

Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, SP, 17525-902, Brazil.

The symbiosis between intestinal bacteria and the human body's physiological processes can modulate health. The intestinal microbiota is linked to the development of neurotrophic factors; therefore, it is increasingly related to the modulation of nervous system pathologies. Moreover, microbiota can interfere with inflammation and oxidative stress, which are closely linked to cardiovascular risk factors and several other inflammatory conditions, such as kidney and neurodegenerative diseases.

View Article and Find Full Text PDF

Aim: Autoimmune diseases, characterized by the immune system mistakenly attacking the body's own tissues, are a growing global concern, with increasing prevalence. The circadian clock is a fundamental regulator of physiological processes, critically modulating immune functions. This review explores the intricate connections between circadian rhythms and immune responses in autoimmune pathogenesis and how disruptions exacerbate disease.

View Article and Find Full Text PDF

Autoimmune diseases occur when the immune system mistakenly attacks the body's own tissues, affecting millions of people and often requiring long-term treatment. Current therapies, such as immunosuppressants and biologics, help manage symptoms but can cause serious side effects. A promising new approach involves engineered microbiota-a method that modifies gut bacteria to influence immune function and potentially ease autoimmune conditions.

View Article and Find Full Text PDF

In order to preserve homeostasis, macrophages-phagocytic innate immune cells-interact with different tissue types, modulating immunological responses and secreting a variety of cytokines. They are extensively dispersed throughout the body's tissues and organs. Based on their developmental origins, tissue-resident macrophages (TRMs) in humans can be classified into those of embryonic origin and those derived from bone marrow-derived monocytes (BMDMs); embryonically derived macrophages emerge during early development, possess self-renewal capacity, and persist into adulthood in specific tissues such as microglia in the brain and Kupffer cells in the liver, whereas BMDMs originate from hematopoietic stem cells in the bone marrow via monocytic differentiation, infiltrate tissues during inflammation or injury, and differentiate into macrophages that transiently reside in tissues but lack self-renewal capability, thus requiring continuous replenishment.

View Article and Find Full Text PDF

Background: Despite the high prevalence of skin conditions, access to dermatologists remains limited, leaving patients to rely on primary care doctors, paediatricians or emergency medicine providers for diagnosis and treatment. Additionally, dermatology education in medical school is often insufficient, with limited hours dedicated to the specialty. The widespread need for dermatologic care and the curricular time devoted to training medical students in dermatology topics are misaligned, which underscores the importance of enhancing dermatology training within the undergraduate medical curriculum.

View Article and Find Full Text PDF