Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Topographical patterns are widely applied in many manufacturing areas due to the unique role in modifying performance related to physical, chemical and biological fundamentals. The patterns are usually realized by buckling or wrinkling, self-assembly or epitaxy, and lithography techniques. However, the combination of satisfactory controllability, ridge robustness, cost and dimensional precision is still difficult to achieve by any of the strategies above. A novel, simple and low-cost nanopatterning technique named "photodegradation copying method" with high technological flexibility has been initially proposed in this study. As a perfect example, a nanoridge-patterned surface has been successfully realized on a polymeric film thanks to the selective photodegradation of polymer and the shielding effect of silver nanowire (AgNW) networks. Roughness, wettability and transmittance of the polymeric film became simply and effectively controllable by adjusting the photodegradation time or the size and distribution of AgNWs. In addition, the ridge-patterned film could also be employed as a substrate in transfer printing for more flexible devices. Various topographical nanopatterns are expected to be simply realized by the photocopying method, just replacing nanowires with other masks like nanodisks, nanocubes, nanotriangles, and so on. This promising photocopying technique is believed to play an important role in the development of topographical nanopatterns, and enable more intriguing applications simply, flexibly and inexpensively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091417PMC
http://dx.doi.org/10.1039/c8ra02249fDOI Listing

Publication Analysis

Top Keywords

polymeric film
12
topographical nanopatterns
8
nanoridge patterns
4
patterns polymeric
4
film
4
film photodegradation
4
photodegradation copying
4
copying method
4
method metallic
4
metallic nanowire
4

Similar Publications

An iterative approach to statistical optimization of exopolysaccharide produced by fermentation of .

Biotechnol Rep (Amst)

September 2025

Technical University of Munich, Germany, TUM Campus Straubing for Biotechnology and Sustainability, Bioprocess Engineering, Uferstraße 53, D-94315 Straubing, Germany.

Exopolysaccharides are biopolymers with wide-ranging industrial applications. To substitute fossil-based by bio-based, biodegradable polymers, exopolysaccharide production needs to become much more efficient. Pullulan, produced by , is popular for its unique properties like film-formation, adhesiveness, biodegradability, etc.

View Article and Find Full Text PDF

Molecular Extrusion Drives Polymer Dynamic Soft Encapsulation to Inhibit Lead Leakage for Efficient Inverted Perovskite Solar Cells and Modules.

Adv Mater

September 2025

School of Physical Science and Technology, College of Energy, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, 215000, P. R. China.

Polymer additives exhibit unique advantages in suppressing lead leaching from perovskite solar cells (PSCs). However, polymers tend to excessively aggregate in the perovskite film, which hinders comprehensive encapsulation and disrupts charge transport efficiency, degrading lead leakage inhibition and device performance. Herein, a polymer dynamic soft encapsulation strategy driven by molecular extrusion is introduced to mitigate lead leakage in PSCs, achieved through the incorporation of poly(propylene adipate) (PPA) as a multifunctional additive in the perovskite formulation.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.

View Article and Find Full Text PDF

While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.

View Article and Find Full Text PDF

Environmentally friendly food packaging has emerged as a viable strategy to replace traditional plastic films. In this study, eugenol Pickering emulsion was constructed with konjac glucomannan (KGM) and tragacanth gum (GT) as stabilizers, and was introduced into the KGM/chitosan (CS) composite film by electrostatic action to develop a new type of active packaging film. Interfacial characterization revealed optimal emulsion stability at a 1:5 KGM-to-GT mass ratio.

View Article and Find Full Text PDF