Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment.

Water Res

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aggregation kinetics of nanoplastics in aquatic environment are influenced by their interactions with proteins having different structures and properties. This study employed time-resolved dynamic light scattering (TR-DLS) to investigate the effects of 5 proteins (bovine hemoglobin (BHb), bovine (BSA) and human serum albumin (HSA), collagen type I (Col I), and bovine casein (CS)) on aggregation kinetics of polystyrene nanoplastics (PSNPs) under natural water conditions, which were simulated using various ionic strength (1-1000 mM NaCl and 0.01-100 mM CaCl), pH (3-9), and protein concentration (1-5 mg/L of total organic carbon). The results indicated that the interactions between proteins and PSNPs strongly depended on electrostatic properties, protein structures, and solution chemistries, which induced distinct aggregation behaviors in NaCl and CaCl solutions. Electrostatic repulsion and steric hindrance dominated their interactions in NaCl solution by stabilizing PSNPs with the order of spherical BSA and disordered CS > heart-shaped HSA > fibrillar Col I; whereas positively charged BHb destabilized PSNPs with aggregation rate of 1.71 nm/s at 300 mM NaCl. In contrast, at CaCl concentration below 20 mM, proteins destabilized PSNPs following the sequence of HSA > BHb > Col I > BSA depending on counterbalance among double layer compression, cation bridging, and steric hindrance; whereas CS stabilized PSNPs by precipitating Ca that inhibited charge screening effect. Both protein concentration and solution pH affected protein corona formation, surface charge, and protein structure that altered stability of PSNPs. Characterizations using fluorescence spectroscopy, circular dichroism, and two-dimensional correlation analysis spectroscopy showed fluorescence quenching and ellipticity reduction of proteins, indicating strong adsorption affinity between PSNPs and proteins. The study provides insight to how protein configuration and water chemistry affect fate and transport of nanoplastics in aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118522DOI Listing

Publication Analysis

Top Keywords

aggregation kinetics
12
nanoplastics aquatic
12
aquatic environment
12
protein configuration
8
kinetics nanoplastics
8
interactions proteins
8
psnps
8
protein concentration
8
steric hindrance
8
destabilized psnps
8

Similar Publications

In recent years, amino acids have garnered extensive attention as environmentally friendly, small-dose additives for modulating hydrate formation and aggregation behavior. Amino acids, due to their amphiphilic nature, can adsorb at the gas-liquid interface and on hydrate crystal surfaces, thereby modifying interfacial properties and influencing crystal growth patterns. In our measurements, the amino acids displayed a concentration-dependent "double effect".

View Article and Find Full Text PDF

Mycoplasma pneumonia, a primary aetiological agent of atypical pneumonia, necessitates the implementation of rapid point-of-care diagnostics. Lateral flow immunoassays (LFIAs) hold promise for point-of-care testing (POCT), yet their sensitivity levels are frequently constrained by probe affinity and matrix interference. We introduce an orientational labelling strategy that employs magnetic nanoparticles (MNPs) functionalized with staphylococcal protein A (SPA) to simultaneously enhance antibody orientation and facilitate magnetic enrichment.

View Article and Find Full Text PDF

Prolyl endopeptidase (PREP) drives neurodegenerative diseases through dual mechanisms involving enzymatic activity and protein-protein interactions (PPIs), yet current inhibitors predominantly target single pathways. Prolyl endopeptidase (PREP) fuels neurodegeneration via enzymatic cleavage and pathological PPIs, yet current inhibitors usually target only one facet. In this study, leveraging our developed high-sensitivity and high-specificity near-infrared fluorescent probe Z-GP-ACM, we established and validated a screening platform for PREP inhibitors with mouse brain S9 instead of the human recombinant PREP.

View Article and Find Full Text PDF

Functional inhibition of wheat germ agglutinin by glycodendrimers: Interplay of affinity, architecture, and temperature.

Carbohydr Res

September 2025

Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa

Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.

View Article and Find Full Text PDF

Liposomal carriers, used for site-specific drug delivery, are being investigated for diagnostic approaches by replacing the therapeutic with an imaging contrast agent, exploring potential for selective treatment planning. There remains a critical need to improve assessment of biodistribution, stability, and clearance kinetics of liposomal carriers. This pilot study presents a multimodal approach in which liposome-encapsulated J-aggregated indocyanine green (ICG) dye (Lipo-JICG) is imaged with high spatial resolution using both photoacoustic (PA) imaging, to assess the absorbance characteristics of JICG and monomeric ICG, and cryofluorescence tomography (CFT), to measure ICG fluorescence.

View Article and Find Full Text PDF