98%
921
2 minutes
20
The partitioning of volatile organic compounds (VOCs) in soil multiphase system is a critical process for vapour intrusion, however, the importance of vapour-solid interface adsorption doesn't receive the due attention, which causes the exposure assessment too conservative particularly in arid conditions. This paper proposed a multiphase partitioning equilibrium (MPE) model establishing the quantitative relationship between VOCs and its various partitioning phases in soil, including solid-liquid interface adsorption phase, vapour phase and dissolved phase and vapour-solid interface adsorption phase. Taking benzene as the targeted pollutant, the model was found in good agreement with the experimental data while the errors were within one magnitude basically. The role of vapour-solid interface adsorption under different soil moisture conditions was also investigated by the model. The results reveals that a) soil moisture is the conspicuous controlling factor that affects the benzene partitioning in soil; b) vapour-solid interface adsorption dominates benzene uptake when soil relative saturation (RS) is under 20% among three typical soils; c) as adsorption by soil minerals (vapour-solid interface adsorption) is reduced by increasing amounts of humidity (RS > 20%), uptake by partitioning into the soil organic matter (OM) increasingly becomes a controlling factor; d) the common sense that vapour concentration of benzene is particularly high with low level of RS may not occur since the vapour-solid interface adsorption dominates benzene uptake in arid environment. The MPE model is suitable for prediction of VOCs partitioning and vapour exposure risk assessment of contaminated soil in arid area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.115182 | DOI Listing |
Chempluschem
September 2025
HCB Physical Chemistry, Henkel AG & Co. KGaA, Henkelstraße 67, 40589, Düsseldorf, Germany.
Surfactants adsorb at interfaces and reduce the interfacial tension. In technical applications, they are typically used as complex mixtures rather than monodisperse systems. These mixtures often include ionic and non-ionic surfactants, with the non-ionic components comprising various monodisperse species.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDF