Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of laser-induced fluorescence (LIF) combined with machine learning methods can make up for the shortcomings of traditional hydrochemical methods in the accurate and rapid identification of mine water inrush in coal mines. However, almost all of these methods require preprocessing such as principal component analysis (PCA) or drawing the spectral map as an essential step. Here, we provide our solution for the classification of mine water inrush, in which a one-dimensional convolutional neural network (1D CNN) is trained to automatically identify mine water inrush according to the LIF spectroscopy without the need for preprocessing. First, the architecture and parameters of the model were optimized and the 1D CNN model containing two convolutional blocks was determined to be the best model for the identification of mine water inrush. Then, we evaluated the performance of the 1D CNN model using the LIF spectral dataset of mine water inrush containing 540 training samples and 135 test samples, and we found that all 675 samples could be accurately identified. Finally, superior classification performance was demonstrated by comparing with a traditional machine learning algorithm (genetic algorithm-support vector machine) and a deep learning algorithm (two-dimensional convolutional neural network). The results show that LIF spectroscopy combined with 1D CNN can be used for the fast and accurate identification of mine water inrush without the need for complex pretreatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061159PMC
http://dx.doi.org/10.1039/c9ra00805eDOI Listing

Publication Analysis

Top Keywords

mine water
28
water inrush
28
identification mine
16
convolutional neural
12
neural network
12
laser-induced fluorescence
8
spectroscopy combined
8
one-dimensional convolutional
8
machine learning
8
lif spectroscopy
8

Similar Publications

Experimental study on identifying catastrophic failure in the brittle fracture process via multi-source acoustic characteristics.

Ultrasonics

September 2025

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Yunnan 650093, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Yunnan Province, Kunming, Yunnan

Identifying and predicting the catastrophic failure of brittle rock remains a challenging task, yet it is crucial for developing early warning systems and preventing dynamic rock hazards. In this study, we employed the propagative parameters of ultrasonic waves and information from acoustic emission (AE) events to characterize the brittle failure of a flawed sandstone sample under uniaxial compression. A sliding event window method was developed to obtain the temporal b-value, effectively revealing microcrack growth based on the frequency-magnitude distribution of AE events.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

Introduction: Access to water, sanitation, and hygiene (WASH) is critical for public health but remains inadequate in marginalized areas, particularly in sub-Saharan Africa's artisanal and small-scale mining (ASM) communities. Adolescent girls and young women (AGYW) in these settings face unique challenges that impact their health and wellbeing.

Objective: This study aimed to assess WASH access among adolescent girls and young women (aged 10-24) in last-mile ASM communities in Ghana and Uganda, identifying disparities and factors influencing access.

View Article and Find Full Text PDF

Study on Permeability and Flow Characteristics of Composite Thermosensitive Hydrogel and Its Fire Prevention and Extinguishment Performance.

ACS Omega

September 2025

State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.

View Article and Find Full Text PDF