Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inverted perovskite solar cells (PSCs) have recently gained increasing attention because of the long operation lifetime achieved. However, bathocuproine (BCP): a commonly used buffer layer in inverted PSCs, is experimentally confirmed by us to show fast aggregation at the temperature of 85 °C, which is the protocol temperature required by the International Electrotechnical Commission (IEC) standard. This thermal instability of the BCP interfacial layer makes long-term thermal stability of inverted PSCs questionable. Simply removing or replacing it can directly lead to an inferior PCE of a device. We solve this problem by removing the BCP layer and simultaneously increasing the thickness of C, which obtains a high efficiency of 18% comparable with the device with BCP. This is possibly attributed to the extended migration path of carriers from C to metal electrode Ag, consequently reducing the carrier accumulation at the interface. In addition to the interfacial modification, the addition of ionic liquid: BMIMBF into perovskite can further improve a device's thermal stability by its effective suppression of perovskite decomposition. The devices with 0.4 mol% of BMIMBF exhibit promising thermal stability by retaining 80% of their initial PCE after thermal aging of 400 h at 85 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053877PMC
http://dx.doi.org/10.1039/d0ra03238gDOI Listing

Publication Analysis

Top Keywords

thermal stability
16
stability inverted
8
inverted perovskite
8
perovskite solar
8
solar cells
8
inverted pscs
8
thermal
5
enhanced thermal
4
stability
4
inverted
4

Similar Publications

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

Multienzyme Cascade Coimmobilization on ZIF-8-Coated Magnetic Nanoparticles for Efficient d-Allulose Synthesis.

J Agric Food Chem

September 2025

The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.

This study develops a multienzyme coimmobilization strategy on NTA-functionalized ZIF-8-coated magnetic nanoparticles (NZMNPs) for efficient d-allulose synthesis. Under optimized immobilization conditions (enzyme-to-carrier ratio: 1:50 w/w, 30 min immobilization), the system achieved an immobilization efficiency of 93.7% along with 107.

View Article and Find Full Text PDF

Influence of Cooking Methods on Phenolic Compounds and their Activities in Pea Shoots (Pisum sativum).

Plant Foods Hum Nutr

September 2025

Graduate School of Food and Nutritional Sciences, Toyo University, 48-1, Oka, 351-8501, Asaka, Saitama, Japan.

Pea shoots (Pisum sativum) are well known to have nutritional benefits when consumed raw; however, the effects of home cooking on their bioactive compounds remain unclear. Therefore, we investigated how different cooking methods affect the antioxidant activity and stability of antioxidants. Our evaluation revealed that antioxidant activity is preserved by steaming but significantly reduced by microwaving and boiling, which also causes weight loss during cooking.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.

View Article and Find Full Text PDF