Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: YouTube is a popular social media used by youth and has electronic cigarette (e-cigarette) content. We used machine learning to identify the content of e-cigarette videos, featured e-cigarette products, video uploaders, and marketing and sales of e-cigarette products.

Methods: We identified e-cigarette content using 18 search terms (eg, e-cig) using fictitious youth viewer profiles and predicted four models using the metadata as the input to supervised machine learning: (1) video themes, (2) featured e-cigarette products, (3) channel type (ie, video uploaders) and (4) discount/sales. We assessed the association between engagement data and the four models.

Results: 3830 English videos were included in the supervised machine learning. The most common video theme was 'product review' (48.9%), followed by 'instruction' (eg, 'how to' use/modify e-cigarettes; 17.3%); diverse e-cigarette products were featured; 'vape enthusiasts' most frequently posted e-cigarette videos (54.0%), followed by retailers (20.3%); 43.2% of videos had discount/sales of e-cigarettes; and the most common sales strategy was external links for purchasing (34.1%). 'Vape trick' was the least common theme but had the highest engagement (eg, >2 million views). 'Cannabis' (53.9%) and 'instruction' (49.9%) themes were more likely to have external links for purchasing (p<0.001). The four models achieved an F1 score (a measure of model accuracy) of up to 0.87.

Discussion: Our findings indicate that on YouTube videos accessible to youth, a variety of e-cigarette products are featured through diverse videos themes, with discount/sales. The findings highlight the need to regulate the promotion of e-cigarettes on social media platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630169PMC
http://dx.doi.org/10.1136/tobaccocontrol-2021-057243DOI Listing

Publication Analysis

Top Keywords

machine learning
16
e-cigarette content
12
e-cigarette products
12
e-cigarette
8
e-cigarette videos
8
featured e-cigarette
8
video uploaders
8
supervised machine
8
external links
8
links purchasing
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF