98%
921
2 minutes
20
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in alleviating movement disability in patients with Parkinson’s disease (PD). However, its therapeutic mechanism of action is unknown. The healthy striatum exhibits rich dynamics resulting from an interaction of beta, gamma, and theta oscillations. These rhythms are essential to selection and execution of motor programs, and their loss or exaggeration due to dopamine (DA) depletion in PD is a major source of behavioral deficits. Restoring the natural rhythms may then be instrumental in the therapeutic action of DBS. We develop a biophysical networked model of a BG pathway to study how abnormal beta oscillations can emerge throughout the BG in PD and how DBS can restore normal beta, gamma, and theta striatal rhythms. Our model incorporates STN projections to the striatum, long known but understudied, found to preferentially target fast-spiking interneurons (FSI). We find that DBS in STN can normalize striatal medium spiny neuron activity by recruiting FSI dynamics and restoring the inhibitory potency of FSIs observed in normal conditions. We also find that DBS allows the reexpression of gamma and theta rhythms, thought to be dependent on high DA levels and thus lost in PD, through cortical noise control. Our study highlights that DBS effects can go beyond regularizing BG output dynamics to restoring normal internal BG dynamics and the ability to regulate them. It also suggests how gamma and theta oscillations can be leveraged to supplement DBS treatment and enhance its effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171607 | PMC |
http://dx.doi.org/10.1073/pnas.2120808119 | DOI Listing |
J Nurs Educ
September 2025
Union, Kentucky and Phi Gamma Chapter-Sigma Theta Tau International Nursing Honor Society, Indianapolis, Indiana.
J Integr Neurosci
August 2025
CIBA Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, 76010 Querétaro, México.
Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.
View Article and Find Full Text PDFFront Cell Neurosci
August 2025
Memory Research Laboratory, Brain Institute and Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil.
Object recognition memory (ORM) allows animals to distinguish between novel and familiar items. When reactivated during recall in the presence of a novel object, a consolidated ORM can be destabilized and linked to that generated by the novel object through reconsolidation. The CA1 region of the dorsal hippocampus contributes to ORM destabilization and reconsolidation, with mechanisms involving theta/gamma cross-frequency coupling (hPAC) and synaptic plasticity modulation.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, South Korea.
Unlabelled: Purpose: Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a sleep disorder considered to be a prodromal stage of neurodegeneration disease and is often accompanied by cognitive impairments. The purpose of this study was to investigate spatiotemporal characteristics of abnormal oscillatory cortical activity associated with dysfunction of visuospatial attention in iRBD based on an explainable machine learning approach. Methods: EEGs were recorded from 49 iRBD patients and 49 normal controls while they were performing Posner's cueing task and transformed to cortical current density time-series.
View Article and Find Full Text PDFEur J Neurosci
September 2025
Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany.
Initial findings linking Virtual Reality (VR)-based encoding to increased recollection at retrieval remain inconclusive due to heterogeneous study designs and dependence on behavioral data. To clarify under which circumstances VR-based encoding affects or enhances episodic memory retrieval, the fundamental question remains whether the encoding modality, i.e.
View Article and Find Full Text PDF