Patterning and Development of Photoreceptors in the Human Retina.

Front Cell Dev Biol

Department of Biology, Johns Hopkins University, Baltimore, MD, United States.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049932PMC
http://dx.doi.org/10.3389/fcell.2022.878350DOI Listing

Publication Analysis

Top Keywords

photoreceptors human
8
human retina
8
photoreceptors
5
patterning development
4
development photoreceptors
4
retina humans
4
humans rely
4
rely visual
4
visual cues
4
cues navigate
4

Similar Publications

Macular Optical Coherence Tomography Parameters and Incident Glaucoma Among Myopic Eyes.

Transl Vis Sci Technol

September 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, People's Republic of China.

Purpose: The purpose of this study was to estimate the correlations between macular optical coherence tomography (OCT)-derived metrics and incident glaucoma risk in myopic eyes.

Methods: This longitudinal observational study included 24,181 individuals with myopia (spherical equivalence [SE] ≤ -0.5 diopters [D]) from the UK Biobank study.

View Article and Find Full Text PDF

Human opsin restoration by histone methylation using methyltransferase fusion protein SETD7-dCas9.

Mol Ther Nucleic Acids

September 2025

Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.

Epigenetic modulation enables precise gene regulation without altering DNA sequences. While histone acetylation has been widely utilized for gene activation, the therapeutic potential of histone methylation remains underexplored. In this study, we developed a new epigenetic activator by fusing the histone methyltransferase SETD7 to deactivated Cas9 (dCas9).

View Article and Find Full Text PDF

Retinal organoids (ROs) represent a promising regenerative strategy for restoring vision in retinal degenerative diseases, but whether host cone bipolar cells (BCs) in the primate macula can rewire with transplanted photoreceptors remains unresolved. Here, we transplanted genome-edited human retinal organoids lacking ON-BCs ( ROs) into a non-human primate macular degeneration model. Remarkably, host rod and cone BCs extended dendrites toward grafted photoreceptors, forming functional synapses confirmed by immunohistochemistry, ultrastructural imaging, and focal macular electroretinography.

View Article and Find Full Text PDF

The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).

View Article and Find Full Text PDF

Background: Retinitis pigmentosa (RP) is a leading cause of blindness affecting 2 million people worldwide. Mutations in cyclic nucleotide-gated channel alpha 1 (CNGA1) account for 2-8% of autosomal recessive RP with no available treatment. Here we further evaluate our previously developed Cnga1 mouse model.

View Article and Find Full Text PDF