98%
921
2 minutes
20
The oxidative desulfurization (ODS) of organic sulfur compounds over tungsten oxide supported on highly ordered mesoporous SnO (WO /meso-SnO) was investigated. A series of WO /meso-SnO with WO contents from 10 wt% to 30 wt%, were prepared by conventional wet impregnation. The physico-chemical properties of the WO /meso-SnO catalysts were characterized by X-ray diffraction (XRD), N adsorption-desorption isotherms, electron microscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and the temperature-programmed reduction of hydrogen (H-TPR). The characterization results indicated that these catalysts possessed mesoporous structures with uniform pores, high specific surface areas, and well-dispersed polyoxotungstate species on the surface of meso-SnO support. The ODS performances were evaluated in a biphasic system (model oil/acetonitrile, = 2000 ppm), using HO as an oxidant, and acetonitrile as an extractant. Dibenzothiophene (DBT) in the model oil was removed completely within 60 min at 50 °C using 20 wt% WO /meso-SnO catalyst. Additionally, the effect of reaction temperature, HO/DBT molar ratio, amount of catalyst and different sulfur-containing substrates on the catalytic performances were also investigated in detail. More importantly, the 20 wt% WO /meso-SnO catalyst exhibited 100% surfur-removal efficiency without any regeneration process, even after six times recycling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037815 | PMC |
http://dx.doi.org/10.1039/d1ra04957g | DOI Listing |
Biomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Background: The separation of structural isomers is always a challenging task for liquid chromatography because of their similar physicochemical property. Research has found that materials with regular microporous structures exhibit excellent isomer separation performance. However, as the most easily available chromatographic material, silica stationary phases with regular and small mesopore structure have not yet been prepared, and it remains to be confirmed whether narrow pores in silica materials have the enhancing effect on shape selectivity in the separation of structural isomers.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India. Electronic address:
Multifunctional polymers derived from waste biomass are under intense global investigation for wastewater remediation owing to their environmental advantages. Therefore, this study reports the synthesis of a novel polyamidoxime-co-polyethyleneimine multifunctional cellulose, which was used as an adsorbent for the removal of acidic dye pollutants. Morphological, structural, and surface studies were performed using several techniques.
View Article and Find Full Text PDFSmall
September 2025
Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, Częstochowa, 42-200, Poland.
Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China.
Here, we report a multifunctional hybrid membrane-coated nanomotor for cancer chemoimmunotherapy, which consists of mesoporous silica-coated iron oxide nanoparticles (MF) as a drug carrier, loaded with doxorubicin (DOX), l-arginine (l-arg), and glucose oxidase (GOx), and camouflaged with a hybrid of red blood cell membranes (mRBC) and cancer cell membranes (CCM). RM-GDL-MF has a cascade of catalytic reactions, where glucose is catalyzed by GOx to produce HO, and l-arg is oxidized by the produced HO to release nitric oxide (NO), leading to self-propelled motion in order to promote the penetration of the extracellular matrix (ECM) in the tumor. The hybrid membrane provides not only stealth properties from mRBC to evade immune clearance but also tumor-orientation ability to target the tumor from the CCM.
View Article and Find Full Text PDF