98%
921
2 minutes
20
Plant adaptation to environmental stress generated by low water availability requires continuous search for moisture niches in the soil. Thus, roots have evolved a hydrotropic response to sense differences in water potential of the soil, and through asymmetric growth, roots can bend to avoid lower water potential sites. Different experimental systems have been devised for hydrotropism assays, which usually rely on air moisture or split agar assays. This latter system uses plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient. Seedlings are placed on the agar plate containing normal medium (NM) so that their root tips are near the junction between NM and the region supplemented with the osmolyte. As a result, a hydrotropic response is elicited to avoid the low water potential medium, which is reflected in the root curvature angle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2297-1_2 | DOI Listing |
Phys Chem Chem Phys
September 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Laboratoires VIVACY, France.
Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.
Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.
Nanoscale
September 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Nutritional Science, Justus-Liebig University Giessen, Giessen, Germany.
Hypertension represents a major risk factor for cardiovascular diseases. As a diet high in sodium chloride is associated with hypertension, so-called "blood pressure salts" are attracting increasing scientific interest. These are characterized by a partial replacement of sodium chloride by other salts, mainly potassium and magnesium compounds.
View Article and Find Full Text PDF