Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement. A purpose-built texture pattern phantom was scanned on 10 different PET scanners in 7 institutions with various different image acquisition and reconstruction protocols. An image harmonization technique based on equalizing a contrast-to-noise ratio was employed to generate a "harmonized" alongside a "standard" dataset for a reproducibility study. In addition, a repeatability study was performed with images from a single PET scanner of variable image noise, varying the binning time of the reconstruction. Feature agreement was measured using the intraclass correlation coefficient (ICC). In the repeatability study, 81/93 features had a lower ICC on the images with the highest image noise as compared to the images with the lowest image noise. Using the harmonized dataset significantly improved the feature agreement for five of the six investigated feature classes over the standard dataset. For three feature classes, high feature agreement corresponded with higher sensitivity to the different patterns, suggesting a way to select suitable features for predictive models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025788PMC
http://dx.doi.org/10.3390/tomography8020091DOI Listing

Publication Analysis

Top Keywords

image noise
16
feature agreement
12
image harmonization
8
radiomics features
8
pet images
8
repeatability study
8
feature classes
8
image
6
feature
6
features
5

Similar Publications

Cortical networks with multiple interneuron types generate oscillatory patterns during predictive coding.

PLoS Comput Biol

September 2025

Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.

Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).

View Article and Find Full Text PDF

YOLOv11-WBD: A wavelet-bidirectional network with dilated perception for robust metal surface defect detection.

PLoS One

September 2025

Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.

In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.

View Article and Find Full Text PDF

Thyroid eye disease (TED) is a prevalent autoimmune orbital disorder that can severely impair visual function and significantly diminish patients' quality of life. In recent years, several studies have attempted to automate TED diagnosis using optical coherence tomography (OCT) images. However, existing approaches primarily rely on convolutional neural networks (CNNs) combined with attention mechanisms and are mostly trained using traditional cross-entropy loss.

View Article and Find Full Text PDF

This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF