The presence of a catheter required for contrast infusion during sialography obscures imaging of the distal duct. Static imaging via cone beam computed tomography and magnetic resonance sialography fails to address changes that occur dynamically to the anatomy of the flexible salivary ductal system. We aim to identify dynamic changes to the parotid gland by introducing a novel approach to analyze the full extent of Stensen's duct based on dynamic infusion digital sialography.
View Article and Find Full Text PDFRadiation treatment of cancers like prostate or cervix cancer requires considering nearby bone structures like vertebrae. In this work, we present and validate a novel automated method for the 3D segmentation of individual lumbar and thoracic vertebra in computed tomography (CT) scans. It is based on a single, low-complexity convolutional neural network (CNN) architecture which works well even if little application-specific training data are available.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have a proven track record in medical image segmentation. Recently, Vision Transformers were introduced and are gaining popularity for many computer vision applications, including object detection, classification, and segmentation. Machine learning algorithms such as CNNs or Transformers are subject to an inductive bias, which can have a significant impact on the performance of machine learning models.
View Article and Find Full Text PDFFor multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement.
View Article and Find Full Text PDFPurpose: The purpose of this work was to develop and validate a deep convolutional neural network (CNN) approach for the automated pelvis segmentation in computed tomography (CT) scans to enable the quantification of active pelvic bone marrow by means of Fluorothymidine F-18 (FLT) tracer uptake measurement in positron emission tomography (PET) scans. This quantification is a critical step in calculating bone marrow dose for radiopharmaceutical therapy clinical applications as well as external beam radiation doses.
Methods: An approach for the combined localization and segmentation of the pelvis in CT volumes of varying sizes, ranging from full-body to pelvis CT scans, was developed that utilizes a novel CNN architecture in combination with a random sampling strategy.
Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs.
View Article and Find Full Text PDFMedical imaging is utilized in a wide range of clinical applications. To enable a detailed quantitative analysis, medical images must often be segmented to label (delineate) structures of interest; for example, a tumor. Frequently, manual segmentation is utilized in clinical practice (e.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2020
Fractal biological structures are pervasive throughout the plant and animal kingdoms, with the mammalian lung being a quintessential example. The lung airway and vascular trees are generated during embryogenesis from a small set of building codes similar to Turing mechanisms that create robust trees ideally suited to their functions. Whereas the blood flow pattern generated by these fractal trees has been shown to be genetically determined, the geometry of the trees has not.
View Article and Find Full Text PDFPurpose: The purpose of this work was to assess the potential of deep convolutional neural networks in automated measurement of cerebellum tracer uptake in F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) scans.
Methods: Three different three-dimensional (3D) convolutional neural network architectures (U-Net, V-Net, and modified U-Net) were implemented and compared regarding their performance in 3D cerebellum segmentation in FDG PET scans. For network training and testing, 134 PET scans with corresponding manual volumetric segmentations were utilized.
J Appl Physiol (1985)
February 2020
To facilitate computational toxicology, we developed an approach for generating high-resolution lung-anatomy and particle-deposition mouse models. Major processing steps of our method include mouse preparation, serial block-face cryomicrotome imaging, and highly automated image analysis for generating three-dimensional (3D) mesh-based models and volume-based models of lung anatomy (airways, lobes, sublobes, and near-acini structures) that are linked to local particle-deposition measurements. Analysis resulted in 34 mouse models covering 4 different mouse strains (B6C3F1: 8, BALB/C: 11, C57Bl/6: 8, and CD-1: 7) as well as both sexes (16 male and 18 female) and different particle sizes [2 μm ( = 15), 1 μm ( = 16), and 0.
View Article and Find Full Text PDFBackground: In the era of precision oncology and publicly available datasets, the amount of information available for each patient case has dramatically increased. From clinical variables and PET-CT radiomics measures to DNA-variant and RNA expression profiles, such a wide variety of data presents a multitude of challenges. Large clinical datasets are subject to sparsely and/or inconsistently populated fields.
View Article and Find Full Text PDFIntroduction: 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is now a standard diagnostic imaging test performed in patients with head and neck cancer for staging, re-staging, radiotherapy planning, and outcome assessment. Currently, quantitative analysis of FDG PET scans is limited to simple metrics like maximum standardized uptake value, metabolic tumor volume, or total lesion glycolysis, which have limited predictive value. The goal of this work was to assess the predictive potential of new (i.
View Article and Find Full Text PDFRadiomics is an image analysis approach for extracting large amounts of quantitative information from medical images using a variety of computational methods. Our goal was to evaluate the utility of radiomic feature analysis from F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in prediction of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oropharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging before treatment.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2018
Segmentation of pulmonary lobes in inspiration and expiration chest CT scan pairs is an important prerequisite for lobe-based quantitative disease assessment. Conventional methods process each CT scan independently, resulting typically in lower segmentation performance at expiration compared to inspiration. To address this issue, we present an approach, which utilizes CT scans at both respiratory states.
View Article and Find Full Text PDFChest wall strapping (CWS) induces breathing at low lung volumes but also increases parenchymal elastic recoil. In this study, we tested the hypothesis that CWS dilates airways via airway-parenchymal interdependence. In 11 subjects (6 healthy and 5 with mild to moderate COPD), pulmonary function tests and lung volumes were obtained in control (baseline) and the CWS state.
View Article and Find Full Text PDFStat Methods Med Res
April 2019
Quantitative biomarkers derived from medical images are being used increasingly to help diagnose disease, guide treatment, and predict clinical outcomes. Measurement of quantitative imaging biomarkers is subject to bias and variability from multiple sources, including the scanner technologies that produce images, the approaches for identifying regions of interest in images, and the algorithms that calculate biomarkers from regions. Moreover, these sources may differ within and between the quantification methods employed by institutions, thus making it difficult to develop and implement multi-institutional standards.
View Article and Find Full Text PDFPurpose: Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
RADEval is a tool developed to assess the expected clinical impact of contouring accuracy when comparing manual contouring and semi-automated segmentation. The RADEval tool, designed to process large scale datasets, imported a total of 2,760 segmentation datasets, along with a Simultaneous Truth and Performance Level Estimation (STAPLE) to act as ground truth tumor segmentations. Virtual dose-maps were created within RADEval and two different tumor control probability (TCP) values using a Logistic and a Poisson TCP models were calculated in RADEval using each STAPLE and each dose-map.
View Article and Find Full Text PDFPurpose: Radiomics utilizes a large number of image-derived features for quantifying tumor characteristics that can in turn be correlated with response and prognosis. Unfortunately, extraction and analysis of such image-based features is subject to measurement variability and bias. The challenge for radiomics is particularly acute in Positron Emission Tomography (PET) where limited resolution, a high noise component related to the limited stochastic nature of the raw data, and the wide variety of reconstruction options confound quantitative feature metrics.
View Article and Find Full Text PDFComput Biol Med
September 2016
Robust lung segmentation is challenging, especially when tens of thousands of lung CT scans need to be processed, as required by large multi-center studies. The goal of this work was to develop and assess a method for the fusion of segmentation results from two different methods to generate lung segmentations that have a lower failure rate than individual input segmentations. As basis for the fusion approach, lung segmentations generated with a region growing and model-based approach were utilized.
View Article and Find Full Text PDFPurpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans.
Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics.
Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation.
View Article and Find Full Text PDFPurpose: Analysis and comparison of airways imaged in pairs of inspiration and expiration lung CT scans provides important information for quantitative assessment of lung diseases like chronic obstructive pulmonary disease. However, airway tree reconstruction in expiration CT scans is a challenging problem. Typically, only a low number of airway branches are found in expiration scans, compared to inspiration scans.
View Article and Find Full Text PDFInt J Biomed Imaging
November 2015
Dynamic and longitudinal lung CT imaging produce 4D lung image data sets, enabling applications like radiation treatment planning or assessment of response to treatment of lung diseases. In this paper, we present a 4D lung segmentation method that mutually utilizes all individual CT volumes to derive segmentations for each CT data set. Our approach is based on a 3D robust active shape model and extends it to fully utilize 4D lung image data sets.
View Article and Find Full Text PDFWe present a graph-based framework for airway tree reconstruction from computerized tomography (CT) scans and evaluate the performance of different feature categories and their combinations on five lung cohorts. The approach consists of two main processing steps. First, potential airway branch and connection candidates are identified and represented by a graph structure with weighted nodes and edges, respectively.
View Article and Find Full Text PDF