Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Whole-body magnetic resonance imaging (MRI) is increasingly being used in children, however, to date there are no studies addressing the reliability of the findings.

Objective: To examine intra- and interobserver reliability of a scoring system for assessment of high signal areas within the bone marrow, as visualized on T2-weighted, fat-saturated images.

Materials And Methods: Ninety-six whole-body MRIs (1.5 T) in 78 healthy volunteers (mean age: 11.5 years) and 18 children with chronic nonbacterial osteomyelitis (mean age: 12.4 years) were included. Coronal water-only Dixon T2-weighted images were used to score the left lower extremity/pelvis for high signal intensity areas, intensity (0-2 scale), extension (0-4 scale) and shape and contour in a blinded fashion by two pairs of radiologists.

Results: For the pelvis, grading of bone marrow signal showed moderate to good intra- and interobserver agreement with kappa values of 0.51-0.94 and 0.41-0.87, respectively. Corresponding figures for the femur were 0.61-0.68 within and 0.32-0.61 between observers, and for the tibia 0.60-0.72 and 0.51-0.73. Agreement for assessing extension was moderate to good both within and between observers for the pelvis (k = 0.52-0.85 and 0.35-0.80), for the femur (0.52-0.67 and 0.51-0.60) and for the tibia (k = 0.59-0.69 and 0.47-0.63) except for the femur metaphysis/diaphysis, with interobserver kappa values of 0.29-0.30. Scoring of shape was moderate to good within observers, but in general poorer between observers, with kappa values of 0.40-0.73 and 0.18-0.69, respectively. For contour, the corresponding figures were 0.35-0.62 and 0.09-0.54, respectively.

Conclusion: MRI grading of intensity and extension of high signal intensity areas within the bone marrow of pelvis and lower limb performs well and thus can be used interchangeably by different observers, while assessment of shape and contour is reliable for the same observer but is less reliable between observers. This should be considered when performing clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192437PMC
http://dx.doi.org/10.1007/s00247-022-05312-yDOI Listing

Publication Analysis

Top Keywords

high signal
16
bone marrow
16
signal intensity
12
moderate good
12
kappa values
12
intra- interobserver
8
areas bone
8
intensity areas
8
shape contour
8
corresponding figures
8

Similar Publications

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Background: High-dose insulin and euglycemic therapy are widely used to treat calcium channel blocker toxicity. However, the effect of insulin on vasodilation evoked by the dihydropyridine calcium channel blocker amlodipine remains unknown. This study examined the effect of insulin on amlodipine-induced vasodilation in isolated rat aortas with specific emphasis on mechanisms associated with nitric oxide (NO).

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF

A novel label-free NIR aptasensor based on triphenylmethane dyes for rapid detection of salicylic acid.

Anal Methods

September 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.

View Article and Find Full Text PDF