Similar Publications

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) dimerization plays a pivotal role in cellular signaling, influencing proliferation and disease progression, particularly in cancer. Despite extensive studies, the quantitative relationship between EGFR expression levels and dimerization efficiency remains incompletely understood. In this study, we investigated EGFR dimerization kinetics using ensemble-level biochemical assays and single-molecule tracking (SMT) in living cells.

View Article and Find Full Text PDF

Investigation of the fundamental microscopic processes occurring in organic reactions is essential for optimising both organocatalysts and synthetic strategies. In this study, single-molecule fluorescence microscopy was employed to study the Diels-Alder reaction catalysed by a first-generation MacMillan catalyst, providing direct insights into its kinetic dynamics. This reaction proceeds via a series of reversible processes under equilibrium conditions (S ⇄ IM ⇄ IM → P, IM and IM: N,O-acetal and iminium ion intermediates, respectively).

View Article and Find Full Text PDF

Real-Space Quantitative Molecular Analysis at Single-Molecule Resolution.

J Am Chem Soc

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.

Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF