Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Some clinical studies have shown promising effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on pain relief. Nevertheless, a few studies reported no significant analgesic effects of tDCS, likely due to the complexity of clinical pain conditions. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds that are present in the clinical data. This study aimed to investigate the effects of high-definition tDCS (HD-tDCS) stimulation over M1 on sensitivity to experimental pain and assess whether these effects could be influenced by the pain-related cognitions and emotions. A randomized, double-blinded, crossover, and sham-controlled design was adopted. A total of 28 healthy participants received anodal, cathodal, or sham HD-tDCS over M1 (1 mA for 20 min) in different sessions, in which montage has the advantage of producing more focal stimulation. Using a cold pressor test, several indices reflecting the sensitivity to cold pain were measured immediately after HD-tDCS stimulation, such as cold pain threshold and tolerance and cold pain intensity and unpleasantness ratings. Results showed that only anodal HD-tDCS significantly increased cold pain threshold when compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain tolerance, pain intensity, and unpleasantness ratings. Correlation analysis revealed that individuals that a had lower level of attentional bias to negative information benefited more from attenuating pain intensity rating induced by anodal HD-tDCS. Therefore, single-session anodal HD-tDCS modulates the sensory-discriminative aspect of pain perception as indexed by the increased pain threshold. In addition, the modulating effects of HD-tDCS on attenuating pain intensity to suprathreshold pain could be influenced by the participant's negative attentional bias, which deserves to be taken into consideration in the clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8971908PMC
http://dx.doi.org/10.3389/fnmol.2022.853509DOI Listing

Publication Analysis

Top Keywords

cold pain
24
pain
17
pain intensity
16
pain threshold
12
anodal hd-tdcs
12
effects high-definition
8
transcranial direct
8
direct current
8
current stimulation
8
primary motor
8

Similar Publications

Objectives: To investigate the role of a neural pathway from oxytocin (OXT) neurons in the hypothalamic paraventricular nucleus (PVN) to γ-aminobutyric acid (GABA) neurons in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.

Methods: A chronic migraine model was established by intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: Wild-type C57BL/6J mice were divided into 4 groups (=6 in each), receiving single or repeated injection of NTG or saline, respectively.

View Article and Find Full Text PDF

Introduction: Distraction methods such as virtual reality and cold vibration devices (Buzzy) are recommended during vascular access. Few studies focused on distraction during intramuscular injection.

Methods: This study evaluated the effect of distraction methods on procedure-related pain, fear, and anxiety during the intramuscular injection in children aged 5 to 12 years in the pediatric emergency department.

View Article and Find Full Text PDF

The thermal grill elicits central sensitization.

Pain

August 2025

Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.

The thermal grill, in which innocuous warm and cool stimuli are interlaced, can produce a paradoxical burning pain sensation-the thermal grill illusion (TGI). Although the mechanisms underlying TGI remain unclear, prominent theories point to spinal dorsal horn integration of innocuous thermal inputs to elicit pain. It remains unknown whether the TGI activates peripheral nociceptors, or solely thermosensitive afferents that are integrated within the spinal cord to give rise to a painful experience.

View Article and Find Full Text PDF

Autoimmune hemolytic anemia (AIHA) is uncommon in the pediatric population, particularly when it manifests as severe anemia. AIHA is characterized by a positive direct antiglobulin test (DAT) and immune-mediated red blood cell (RBC) destruction. AIHA is subclassified on the basis of the thermal characteristics of autoantibody into warm, cold, and mixed.

View Article and Find Full Text PDF

Generation and phenotypic characterization of a sigma-1 receptor knockout rat.

Life Sci

September 2025

Department of Pharmacology, Faculty of Medicine, University of Granada, 18016, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012, Granada, Spain. Electronic address: fnieto@u

The sigma-1 receptor (σ1R) is a chaperone involved in multiple physiological and pathological processes, including pain modulation, neuroprotection, and neurodegenerative diseases. Despite its functional significance, its precise roles remain unclear due to the lack of suitable models for detailed mechanistic studies. In this work, we describe the generation and phenotypic characterization of a novel σ1R knockout (σ1R KO) rat model.

View Article and Find Full Text PDF