Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615489PMC
http://dx.doi.org/10.1002/adma.202200839DOI Listing

Publication Analysis

Top Keywords

lnp lipid
8
lipid membrane
8
lnp
5
coupling lipid
4
lipid nanoparticle
4
structure
4
nanoparticle structure
4
structure automated
4
automated single-particle
4
single-particle composition
4

Similar Publications

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Lipid nanoparticles: Composition, formulation, and application.

Mol Ther Methods Clin Dev

June 2025

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Lipid nanoparticles (LNPs) are lead non-viral vectors for delivering nucleic acids. LNPs can efficiently encapsulate nucleic acids, protect them from degradation, enhance cellular uptake and induce endosome escape, which show high transfection efficiency and low immunogenicity. In this review, we first introduce the LNP components, highlighting their critical roles in encapsulation, stability, delivery efficiency, and tissue tropism.

View Article and Find Full Text PDF

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF

A Safe and Broad-spectrum SARS-CoV-2 mRNA Vaccine with a New Delivery System for In-situ Expression.

Virol Sin

September 2025

State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.

Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.

View Article and Find Full Text PDF

For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.

View Article and Find Full Text PDF