Silicone polyether surfactant enhances bacterial cellulose synthesis and water holding capacity.

Int J Biol Macromol

Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, 45 Piastów Avenue, 70-311 Szczecin, Poland. Electronic address:

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The versatility and unique properties of bacterial cellulose (BC) motivate research into enhancing its synthesis. Here a silicone polyether surfactant (SPS) was synthesized and tested as a non-nutritional additive to the cultivation media of Komagataeibacter xylinus. The addition of SPS to the Hestrin-Schramm (HS) medium resulted in a concentration-dependent decrease in surface tension from 59.57 ± 0.37 mN/m to 30.05 ± 0.41 mN/m (for 0.1% addition) that was correlated with an increased yield of BC, up to 37% wet mass for surfactant concentration close to its critical micelle concentration (0.008%). Physicochemical characterization of bacterial cellulose obtained in presence of SPS, showed that surfactant is not incorporated into BC structure and has a moderate effect on its crystallinity, thermal stability. Moreover, the water holding capacity was enhanced by over 40%. Importantly, obtained BC did not affect L929 murine fibroblast cell viability. We conclude that SPS provides an eco-friendly approach to increasing BC yield in static culture, enabling more widespread industrial and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.124DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
12
silicone polyether
8
polyether surfactant
8
water holding
8
holding capacity
8
surfactant
4
surfactant enhances
4
enhances bacterial
4
cellulose synthesis
4
synthesis water
4

Similar Publications

Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF

Burning rice straw contribute to Atmospheric Pollution, which makes it unsustainable in the long-run, but are still opted by farmers due to faster removal of residue. Lignocellulose Degrading Microorganisms, facilitating sustainable management, may accelerate the breakdown of various crop residues. A study comprised of twenty-one treatments including fungal strains, bacterial strains and microbial consortia.

View Article and Find Full Text PDF

Heparin-loaded silk fibroin microparticles/bacterial nanocellulose (Hep@SFMPs/BNC) conduits for application as small-caliber artificial blood vessels.

Carbohydr Polym

November 2025

State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med

Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.

View Article and Find Full Text PDF

Chemical structures and molar masses of water-soluble TEMPO-oxidized products prepared from 20 % NaOH-treated cellulose.

Carbohydr Polym

November 2025

Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan. Electronic address:

TEMPO-catalyzed oxidation is a unique method for converting primary C6-hydroxymethyl groups in water-insoluble regenerated cellulose materials to sodium C6-carboxylate groups in water at room temperature to provide water-soluble polyglucuronates. In this study, 20 % NaOH-treated bacterial cellulose (BC), cotton lint (CL), and ramie cellulose (RC) were oxidized to prepare water-soluble polyglucuronates with high degrees of polymerization and high mass recovery ratios. Solid-state CP/MASS C NMR spectra of the water-soluble products indicated that they contained considerable amounts of C2/C3-ketone hydrate structures (50-60 % of glucuronosyl units).

View Article and Find Full Text PDF