98%
921
2 minutes
20
Tumor cell spheroids and 3D cell culture have generated a lot of interest in the past decade due to their relative ease of production and biomedical research applications. To date, the frontier in tumor 3D models has been pushed to the level of personalized cancer treatment and customized tissue engineering applications. However, without vascularization, the central parts of these artificial constructs cannot survive without an adequate oxygen and nutrient supply. The formation of a necrotic core into 3D cell models still serves as the major obstacle in their wider practical application. Here, we propose a rapid formation protocol based on using a water-in-water (w/w) Pickering emulsion template to generate phenotypically endothelial/hepatic (ECV304/Hep-G2) coculture cell clusteroids with angiogenic capability. The w/w Pickering emulsion template was based on a dextran/poly(ethylene oxide) aqueous two-phase system stabilized by whey protein particles. The initial cell proportion in the coculture clusteroids can easily be manipulated for optimal performance. The cocultured pattern of the endothelial/hepatic cells could significantly promote the production of angiogenesis-related proteins. Our study confirmed that cocultured clusteroids can stimulate cell sprouting without the addition of vascular endothelial growth factor (VEGF) or other angiogenesis inducers at a 1:2 ratio of Hep-G2/ECV304. Angiogenesis gene production in the coculture clusteroids was enhanced with VEGF, urea, and insulin-like growth factor-binding protein along with angiogenesis-related marker CD34 levels, also indicating angiogenesis progress. Our aqueous two-phase Pickering emulsion templates provided a convenient approach to vascularize a target cell type in 3D cell coculture without additional stimulating factors, which could potentially apply to either cell lines or biopsy tissues, expanding the clusteroids downstream applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00168 | DOI Listing |
Food Res Int
November 2025
Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.
In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.
Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China. Electronic address:
Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Environmentally friendly food packaging has emerged as a viable strategy to replace traditional plastic films. In this study, eugenol Pickering emulsion was constructed with konjac glucomannan (KGM) and tragacanth gum (GT) as stabilizers, and was introduced into the KGM/chitosan (CS) composite film by electrostatic action to develop a new type of active packaging film. Interfacial characterization revealed optimal emulsion stability at a 1:5 KGM-to-GT mass ratio.
View Article and Find Full Text PDF