Insights into carbon recovery from excess sludge through enzyme-catalyzing hydrolysis strategy: Environmental benefits and carbon-emission reduction.

Bioresour Technol

State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of A

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127006DOI Listing

Publication Analysis

Top Keywords

reducing carbon
8
carbon emission
8
carbon source
8
enzyme cocktails
8
enzymatic pretreatment
8
insights carbon
4
carbon recovery
4
recovery excess
4
excess sludge
4
sludge enzyme-catalyzing
4

Similar Publications

Objectives: To assess changes in greenhouse gas emission rates associated with the use of anaesthetic gases (desflurane, sevoflurane, and isoflurane) in Australian health care during 2002-2022, overall and by state or territory and hospital type.

Study Design: Retrospective descriptive analysis of IQVIA anaesthetic gases purchasing data.

Setting: All Australian public and private hospitals, 1 January 2002 - 31 December 2022.

View Article and Find Full Text PDF

Leishmaniasis, a disease caused by Leishmania parasites, poses a significant health threat globally, particularly in Latin America and Brazil. Leishmania amazonensis is an important species because it is associated with both cutaneous leishmaniasis and an atypical visceral form. Current treatments are hindered by toxicity, resistance, and high cost, driving the need for new therapeutic targets and drugs.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

Polyesters, with their tunable chemical structures and environmental sustainability, have drawn growing attention as solid polymer electrolytes for next-generation solid-state lithium metal batteries (SSLMBs). Through a comprehensive experimental and theoretical study involving the systematic variation of carbon chain lengths in the flexible (diol) and coordinating (diacid) segments, along with selective fluorination at distinct positions along the polymer backbone, 18 types of polyester are fabricated and demonstrate that fluorination at the coordinating segment significantly enhances ionic conductivity by suppressing crystallinity. In contrast, fluorination at the flexible segment reduces ionic migration barriers by providing more homogeneous coordinating sites, thereby improving the lithium-ion transference number, despite increasing chain rigidity and a reduction in overall ionic conductivity.

View Article and Find Full Text PDF

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF