98%
921
2 minutes
20
Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates bile acid homeostasis along with nutrient metabolism. In addition to the gastrointestinal (GI) tract, FXR expression has been widely noted in kidney, adrenal gland, pancreas, adipose, skeletal muscle, heart, and brain. Except for the liver and gut, the relevance of FXR signaling in metabolism in other tissues remains poorly understood. This review examines the classical and non-canonical tissue-specific roles of FXR in regulating, lipids, and glucose homeostasis under normal and diseased states. FXR activation has been reported to be protective against cholestasis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes, cardiovascular and kidney diseases. Several ongoing clinical trials are investigating FXR ligands as a therapeutic target for primary biliary cholangitis (PBC) and NASH, which substantiate the significance of FXR signaling in modulating metabolic processes. This review highlights that FXR ligands, albeit an attractive therapeutic target for treating metabolic diseases, tissue-specific modulation of FXR may be the key to overcoming some of the adverse clinical effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245558 | PMC |
http://dx.doi.org/10.1016/j.mce.2022.111616 | DOI Listing |
Eur J Med Res
September 2025
Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Public Health, Zhengzhou University, Zhengzhou, China; Food Laboratory of Zhongyuan, Luohe, Henan, China. Electronic address:
Cholesterol homeostasis dysregulation is a primary risk factor for atherosclerosis (AS) development. Fisetin, a flavonoid compound, has shown promise in regulating cholesterol homeostasis by enhancing transintestinal cholesterol excretion (TICE). This study aimed to investigate the regulatory effects and underlying mechanisms of fisetin in AS.
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
Service des maladies de l'appareil digestif. Centre de compétence Maladies rares « Maladies inflammatoires des voies biliaires et hépatites autoimmunes », Hôpital Huriez, Lille, France.
Primary biliary cholangitis (PBC) is a rare disease for which management long consisted of a single treatment: ursodeoxycholic acid. In 2015-2016, this disease regained interest with the first studies on obeticholic acid (FXR agonist) and then on bezafibrate (PPAR agonist). Subsequently, over the past five years, significant progress has been made in the management of PBC.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China. Electronic address:
Ethnopharmacological Relevance: Dark tea, a post-fermented tea, has traditionally been used to regulate liver disorders. As an ethnomedicinal plant, its efficacy in alleviating chronic liver disease has been demonstrated.
Aim Of The Study: This study explored the protective effect and potential mechanism of dark tea extract (DTE) against hepatic fibrosis.
Poult Sci
August 2025
Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China. Electronic address:
Excessive abdominal fat deposition (AFD) in poultry reduces meat yield and efficiency. The gut microbiota regulates AFD through shifts in microbial composition and the production of metabolites. Reduced microbial diversity and fat-promoting taxa (e.
View Article and Find Full Text PDF