Publications by authors named "Sayeepriyadarshini Anakk"

Microbes in the intestine transform bile acids during transit, altering their functional and signaling capacities before recirculation via the portal vein. Sex differences in the gut microbiota have been noted, but their consequence on bile acid composition is unclear. Here, we investigated the composition and functional potential of microbes in the small and large intestines together with portal and systemic bile acid levels.

View Article and Find Full Text PDF

The nuclear receptor Constitutive Androstane Receptor (CAR/NR1i3) is known for regulating various liver functions, including detoxification, nutrient metabolism, and hepatocyte proliferation. While CAR activation has been previously linked to higher ploidy, the underlying mechanisms are not fully known. Here, we uncover a basal role for CAR in maintaining hepatocyte ploidy, such that CAR deletion increases the number of diploid (2c) hepatocytes with a concomitant reduction in tetraploid (4c) hepatocytes.

View Article and Find Full Text PDF

The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice.

View Article and Find Full Text PDF

Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing.

View Article and Find Full Text PDF

Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR).

View Article and Find Full Text PDF

Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis.

View Article and Find Full Text PDF

The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood.

View Article and Find Full Text PDF

Background: Bile, which contains bile acids, the natural ligands for farnesoid x receptor (FXR), moves from the liver to the intestine through bile ducts. Ductular reaction often occurs during biliary obstruction. A subset of patients with erythropoietic protoporphyria, an inherited genetic mutation in heme biosynthetic enzyme ferrochelatase, accumulate porphyrin-containing bile plugs, leading to cholestasis.

View Article and Find Full Text PDF

Background & Aims: Although fat loss is observed in patients with cholestasis, how chronically elevated bile acids (BAs) impact white and brown fat depots remains obscure.

Methods: To determine the direct effect of pathological levels of BAs on lipid accumulation and mitochondrial function, primary white and brown adipocyte cultures along with fat depots from two separate mouse models of cholestatic liver diseases, namely (i) genetic deletion of farnesoid X receptor (); small heterodimer () double knockout (DKO) and (ii) injury by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), were used.

Results: As expected, cholestatic mice accumulate high systemic BA levels and exhibit fat loss.

View Article and Find Full Text PDF

Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability.

View Article and Find Full Text PDF

Imidacloprid (IMI) is the most frequently detected neonicotinoid pesticide in the environment. Despite typically low toxicity in vertebrates, IMI exposure is associated with liver and gastrointestinal toxicity. The mechanism underlying IMI toxicity in mammals is unclear.

View Article and Find Full Text PDF

Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly.

View Article and Find Full Text PDF

Small heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of SHP, FXR, CYP7A1, and CYP8B1. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates bile acid homeostasis along with nutrient metabolism. In addition to the gastrointestinal (GI) tract, FXR expression has been widely noted in kidney, adrenal gland, pancreas, adipose, skeletal muscle, heart, and brain. Except for the liver and gut, the relevance of FXR signaling in metabolism in other tissues remains poorly understood.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are ligand-binding transcription factors that regulate gene networks and physiological responses. Often oxidative stress precedes the onset of liver diseases, and Nrf2 is a key regulator of antioxidant pathways. NRs crosstalk with Nrf2, since NR activation can influence the oxidative milieu by modulating reductive cellular processes.

View Article and Find Full Text PDF

Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine.

View Article and Find Full Text PDF

Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are key regulators of metabolism. Here, we report a previously unknown function for the hepatic FXR-SHP axis in controlling protein N-linked glycosylation. Transcriptome analysis in liver-specific Fxr-Shp double knockout (LDKO) livers revealed induction of genes encoding enzymes in the N-glycosylation pathway, including , , , and FXR activation suppressed , while Shp deletion induced and Increased percentages of core-fucosylated and triantennary glycan moieties were seen in LDKO livers, and proteins with the "hyperglycoforms" preferentially localized to exosomes and lysosomes.

View Article and Find Full Text PDF

Small heterodimer partner (SHP) is a crucial regulator of bile acid (BA) transport and synthesis; however, its intestine-specific role is not fully understood. Here, we report that male intestine-specific Shp knockout (IShpKO) mice exhibit higher intestinal BA but not hepatic or serum BA levels compared with the f/f Shp animals when challenged with an acute (5-day) 1% cholic acid (CA) diet. We also found that BA synthetic genes Cyp7a1 and Cyp8b1 are not repressed to the same extent in IShpKO compared with control mice post-CA challenge.

View Article and Find Full Text PDF

IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffolding protein that is overexpressed in a number of cancers, including liver cancer, and is associated with protumorigenic processes, such as cell proliferation, motility, and adhesion. IQGAP1 can integrate multiple signaling pathways and could be an effective antitumor target. Therefore, we examined the role of IQGAP1 in tumor initiation and promotion during liver carcinogenesis.

View Article and Find Full Text PDF

Background & Aims: Liver diseases are caused by many factors, such as genetics, nutrition, and viruses. Therefore, it is important to delineate transcriptomic changes that occur in various liver diseases.

Methods: We performed high-throughput sequencing of mouse livers with diverse types of injuries, including cholestasis, diet-induced steatosis, and partial hepatectomy.

View Article and Find Full Text PDF

Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear.

View Article and Find Full Text PDF

The liver can substantially regenerate after injury, with both main epithelial cell types, hepatocytes and biliary epithelial cells (BECs), playing important roles in parenchymal regeneration. Beyond metabolic functions, BECs exhibit substantial plasticity and in some contexts can drive hepatic repopulation. Here, we performed single-cell RNA sequencing to examine BEC and hepatocyte heterogeneity during homeostasis and after injury.

View Article and Find Full Text PDF