98%
921
2 minutes
20
Interfering with the self-assembly of virus nucleocapsids is a promising approach for the development of novel antiviral agents. Applied to hepatitis B virus (HBV), this approach has led to several classes of capsid assembly modulators (CAMs) that target the virus by either accelerating nucleocapsid assembly or misdirecting it into noncapsid-like particles, thereby inhibiting the HBV replication cycle. Here, we have assessed the structures of early nucleocapsid assembly intermediates, bound with and without CAMs, using molecular dynamics simulations. We find that distinct conformations of the intermediates are induced depending on whether the bound CAM accelerates or misdirects assembly. Specifically, the assembly intermediates with bound misdirecting CAMs appear to be flattened relative to those with bound accelerators. Finally, the potency of CAMs within the same class was studied. We find that an increased number of contacts with the capsid protein and favorable binding energies inferred from free energy perturbation calculations are indicative of increased potency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026740 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.1c02040 | DOI Listing |
PLoS Pathog
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
The parasitic protozoan Trypanosoma brucei has a single mitochondrial nucleoid, anchored to the basal body of the flagellum via the tripartite attachment complex (TAC). The detergent-insoluble TAC is essential for mitochondrial genome segregation during cytokinesis. The TAC assembles de novo in a directed way from the probasal body towards the kDNA.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, 400019, India. Electronic address:
Integrating multi-enzyme systems within metal-organic frameworks (MOFs) has garnered significant attention in biocatalysis due to their tunable structural properties and ability to enhance enzyme performance in cascade reactions. The unique features of MOFs, such as well-defined pore apertures, tailorable compositions, and high loading capacity, facilitate the design of robust multi-enzyme bio-composites with enhanced recyclability and specificity. This review explores systematic approaches for the compartmentalization and positional co-immobilization of multiple enzymes within MOFs, focusing on two key strategies: (i) layer-by-layer assembly and (ii) pore-engineered compartmentalization.
View Article and Find Full Text PDFJ Biol Inorg Chem
September 2025
Department of Chemistry, University of California, Davis, CA, USA.
Vimentin is a principal intermediate filament (IF) protein that is essential for maintaining cytoskeleton architecture and cellular mechanical integrity. Growing evidence is revealing that metal ions play critical roles in modulating the structure, assembly, and mechanics of vimentin IFs. Despite this, a detailed molecular-level understanding of vimentin-metal interactions and its functional consequences remains incomplete.
View Article and Find Full Text PDFEur J Cell Biol
August 2025
Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany. Electronic address:
Keratins are the largest and most diverse group of intermediate filament proteins, providing structural integrity and mechanical strength to epithelial cells. Although their assembly as heterodimers is well established, the specific pairing preferences and molecular basis of keratin dimerisation remain largely unknown. Here, we employ a high-throughput computational pipeline that integrates AlphaFold Multimer (AFM) modelling, VoroIF-GNN interaction interface quality assessment, interaction energy calculations and structural comparisons with experimentally solved structures to systematically investigate keratin heterodimerisation and to provide a guideline for further analysis of intermediate filament assembly.
View Article and Find Full Text PDF