Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parametric nonlinear optical processes are at the heart of nonlinear optics underpinning the central role in the generation of entangled photons as well as the realization of coherent optical sources. Exciton-polaritons are capable to sustain parametric scattering at extremely low threshold, offering a readily accessible platform to study bosonic fluids. Recently, two-dimensional transition-metal dichalcogenides (TMDs) have attracted great attention in strong light-matter interactions due to robust excitonic transitions and unique spin-valley degrees of freedom. However, further progress is hindered by the lack of realizations of strong nonlinear effects in TMD polaritons. Here, we demonstrate a realization of nonlinear optical parametric polaritons in a WS monolayer microcavity pumped at the inflection point and triggered in the ground state. We observed the formation of a phase-matched idler state and nonlinear amplification that preserves the valley population and survives up to room temperature. Our results open a new door towards the realization of the future for all-optical valley polariton nonlinear devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-022-01073-9DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
8
nonlinear
7
nonlinear polariton
4
parametric
4
polariton parametric
4
parametric emission
4
emission atomically
4
atomically thin
4
thin semiconductor
4
semiconductor based
4

Similar Publications

Synthesis and Optical Properties of Unsymmetric Aromatically π-Extended BODIPY.

J Org Chem

September 2025

School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.

A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Soliton propagation of laser radiation in various nonlinear media is of great importance because of its numerous applications. Active periodic structures with parity-time symmetry provide the possibility for the solitons generation due to the balance of energy gain and loss. In the present paper, we derive an approximate analytical soliton solution to a model of two-color laser radiation propagation in an active periodic structure.

View Article and Find Full Text PDF

BaAlBO: a beryllium-free member of the SrBeBO family with a [BAlO] double-layered structure.

Chem Sci

September 2025

State Key Laboratory of Crystal Materials, Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology Tianjin 300384 China

Nonlinear optical (NLO) crystals capable of expanding the spectral region of solid-state are of great importance for many high-tech applications, yet their rational structure design remains a great challenge because of the conflicting property requirements among second harmonic generation (SHG) response, ultraviolet (UV) cut-off edge, and birefringence. Herein, based on the chemical disubstitution of the classic NLO crystal SrBeBO (SBBO), , substituting [BO] triangles with larger π-conjugated [BO] groups and substituting high-toxic [BeO] tetrahedra with environment-friendly [AlO] tetrahedra, a new high-performance aluminoborate NLO crystal, BaAlBO, has been successfully designed and synthesized. The theoretical calculations and optical property measurements indicate that BaAlBO exhibits not only the largest SHG response among the reported aluminoborates (2.

View Article and Find Full Text PDF

A Theoretical Investigation of Third-Order Optical Susceptibility in Metronidazolium-Picrate Crystal and Its Potential for Quantum Memory Applications.

ACS Omega

September 2025

Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Universidade Estadual de Goiás, Anápolis, GO 75001-970, Brazil.

In this work, we report a theoretical investigation of the third-order nonlinear optical properties of the metronidazolium-picrate salt. The effects of the crystal environment are accounted for by the Iterative Charge Embedding approach, and the electronic calculations are carried out at the DFT (CAM-B3LYP/6-311++G-(d,p)) level. Furthermore, we use the results to parametrize a cavity Quantum Electrodynamics model for a quantum memory based on the Off-Resonant Cascaded Absorption protocol.

View Article and Find Full Text PDF