Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent technological innovations, such as material printing techniques and surface functionalization, have significantly accelerated the development of new free-form sensors for next-generation flexible, wearable, and three-dimensional electronic devices. Ceramic film sensors, in particular, are in high demand for the production of reliable flexible devices. Various ceramic films can now be formed on plastic substrates through the development of low temperature fabrication processes for ceramic films, such as photocrystallization and transferring methods. Among flexible sensors, strain sensors for precise motion detection and photodetectors for biomonitoring have seen the most research development, but other fundamental sensors for temperature and humidity have also begun to grow. Recently, flexible gas and electrochemical sensors have attracted a lot of attention from a new real-time monitoring application that uses human breath and perspiration to accurately diagnose presymptomatic states. The development of a low-temperature fabrication process of ceramic film sensors and related components will complete the chemically stable and reliable free-form sensing devices by satisfying the demands that can only be addressed by flexible metal and organic components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914772PMC
http://dx.doi.org/10.3390/s22051996DOI Listing

Publication Analysis

Top Keywords

ceramic film
12
film sensors
12
sensors
8
devices ceramic
8
ceramic films
8
flexible
6
flexible ceramic
4
sensors free-form
4
devices
4
free-form devices
4

Similar Publications

The direct deposition of piezoelectric ceramic thin films onto metal foils has become a significant challenge due to the increasing demand for embedded decoupling capacitors, nanogenerators, and flexible piezo-sensors. However, traditional thermal sintering (TS) methods present several issues for metal foils, including alterations in mechanical properties, the formation of wrinkles, and the need for precise control over the sintering atmosphere to prevent oxidation. In this study, we successfully crystallized BaTiO on a Ni foil under atmospheric conditions, mitigating thermal damage to the foil through a hybrid-solution-incorporated photoassisted chemical solution deposition (HS-PCSD) method.

View Article and Find Full Text PDF

The current most mature, competitive, and dominant battery technology for electric vehicles (EVs) is the Li-ion battery (LIB). As future EVs will rely on battery technology, further innovation is essential for the success of mobility electrification towards improving the driving range and reducing the charging time and price competitiveness. The commonly cited next generation technologies are hybrid and solid-state batteries (SSBs) enabling high energy densities using lithium.

View Article and Find Full Text PDF

Cancer remains a critical global health concern, affecting individuals across all age groups and claiming millions of lives annually. Early detection is essential, as it significantly improves prognosis and enhances survival rates. However, conventional diagnostic techniques, despite their accuracy, are often expensive, time-consuming, and inaccessible in remote or resource-limited areas.

View Article and Find Full Text PDF

This paper reports improvements made to the performance of single-walled carbon nanotube (SWNT) electrodes by integrating a glycerol-doped PEDOT:PSS (PEGL) layer, resulting in a novel material termed SWGL. The PEGL layer addresses key challenges in SWNT electrodes, including poor adhesion, low work function, and limited catalytic activity, by acting as an adhesive interface, carrier injection layer, and catalyst. Through a series of spin-coating and rinsing processes, SWGL films are prepared, exhibiting significantly improved adhesion to inorganic substrates, enhanced electrical conductivity, and stability under thermal treatment.

View Article and Find Full Text PDF

Large-Area Monolayer p-Type Semiconductor Films Toward High-Performance Electrical Device Arrays.

Adv Mater

August 2025

State Key Laboratory of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

2D semiconductors open new avenues in the post-Moore era for semiconductor technologies immune from the short-channel effect due to their atomic-scale thicknesses and dangling-bond-free surfaces. However, it still remains a big challenge to obtain large-area and high-quality monolayer p-type semiconductors so far. Herein, a controlled nucleation is realized by tuning the evaporation areas of Se precursors during the p-type WSe growth.

View Article and Find Full Text PDF