Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and it must have a good performance and durability. In this work, accurate characterizations of performance and durability, in terms of photo- and thermo-oxidation resistance, of encapsulants based on PolyEthylene Vinyl Acetate (EVA) and PolyOlefin Elastomer (POE), containing appropriate additives, before (pre-) and after (post-) lamination process have been carried out. To simulate industrial lamination processing conditions, both EVApre-lam and POEpre-lam sheets have been subjected to prolonged thermal treatment upon high pressure. To carry out an accurate characterization, differential scanning calorimetry, rheological and mechanical analysis, FTIR and UV-visible spectroscopy analyses have been performed on pre- and post-laminated EVA and POE. The durability, in terms of photo- and thermo-oxidation resistance, of pre-laminated and post-laminated EVA and POE sheets has been evaluated upon UVB exposure and prolonged thermal treatment, and the progress of degradation has been monitored by spectroscopy analysis. All obtained results agree that the lamination process has a beneficial effect on 3D-structuration of both EVA and POE sheets, and after lamination, the POE shows enhanced rigidity and appropriate ductility. Finally, although both EVA and POE can be considered good candidates as encapsulants for bifacial PV modules, it seems that the POE sheets show a better resistance to oxidation than the EVA sheets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914825PMC
http://dx.doi.org/10.3390/polym14051052DOI Listing

Publication Analysis

Top Keywords

eva poe
16
poe sheets
12
photovoltaic modules
8
performance durability
8
durability terms
8
terms photo-
8
photo- thermo-oxidation
8
thermo-oxidation resistance
8
lamination process
8
prolonged thermal
8

Similar Publications

Thermally conductive and flame-retardant polyolefin composites are facing great challenges in meeting the increasing demands for fire safety and thermal management. Aiming at simultaneously enhancing thermal conductivity and flame retardancy, hexagonal boron nitride (hBN) and magnesium hydroxide (MH) were adopted in ethylene-vinyl acetate copolymer/polyolefin elastomer (EVA/POE) blends to design composites with selective filler distributions and co-continuous networks via different processing schemes. The thermal conductivity and flame retardancy show strong dependence on the distributed structure of hBN and MH.

View Article and Find Full Text PDF

Glass/glass (G/G) photovoltaic modules are quickly rising in popularity, but the durability of modern G/G packaging has not yet been established. In this work, we examine the interfacial degradation modes in G/G and glass/transparent backsheet modules under damp heat (DH) with and without system bias voltage, comparing emerging polyolefin elastomer (POE) and industry-standard poly(ethylene-co-vinyl acetate) (EVA) encapsulants. We investigate the transport of ionic species at cell/encapsulant interfaces, demonstrating that POE limits both sodium and silver ion migration compared with EVA.

View Article and Find Full Text PDF

Comparison of Crosslinking Kinetics of UV-Transparent Ethylene-Vinyl Acetate Copolymer and Polyolefin Elastomer Encapsulants.

Polymers (Basel)

April 2022

The National Centre for Photovoltaic Research and Education (NCPRE) and Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.

Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers.

View Article and Find Full Text PDF

Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and it must have a good performance and durability.

View Article and Find Full Text PDF

Preparation and Characterization of Wood-Plastic Nanocomposites Based on Acrylonitrile-Butadiene-Styrene.

J Nanosci Nanotechnol

September 2021

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

The new wood-plastic nanocomposites (WPC) based on acrylonitrile-butadiene-styrene (ABS) resin was successfully blended with ABS and poplar flour (PF) through a HAAKE rheomix. The mechanical properties of nanocomposites, except for flexural modulus, were reduced after increasing the PF content. SEM photos show the reduction resulting from weak interfacial adhesion between the PF phase and ABS phase.

View Article and Find Full Text PDF