98%
921
2 minutes
20
Transcutaneous electrical nerve stimulation (TENS) is generally applied for tactile feedback in the field of prosthetics. The distinct mechanisms of evoked tactile perception between stimulus patterns in conventional TENS (cTENS) and neuromorphic TENS (nTENS) are relatively unknown. This is the first study to investigate the neurobiological effect of nTENS for cortical functional mechanism in evoked tactile perception.Twenty-one healthy participants were recruited in this study. Electroencephalogram (EEG) was recorded while the participants underwent a tactile discrimination task. One cTENS pattern (square pattern) and two nTENS patterns (electromyography and single motor unit patterns) were applied to evoke tactile perception in four fingers, including the right and left index and little fingers. EEG was preprocessed and somatosensory-evoked potentials (SEPs) were determined. Then, source-level functional networks based on graph theory were evaluated, including clustering coefficient, path length, global efficiency, and local efficiency in six frequency bands.Behavioral results suggested that the single motor units (SMUs) pattern of nTENS was the most natural tactile perception. SEPs results revealed that SMU pattern exhibited significant shorter latency in P1 and N1 components than the other patterns, while nTENS patterns have significantly longer latency in P3 component than cTENS pattern. Cortical functional networks showed that the SMU pattern had the lowest short path and highest efficiency in beta and gamma bands.This study highlighted that distinct TENS patterns could affect brain activities. The new characteristics in tactile manifestation of nTENS would provide insights for the application of tactile perception restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac5bf6 | DOI Listing |
Patterns (N Y)
July 2025
Department for Physics and Astronomy, Kirchhoff Institute for Physics, Heidelberg University, Baden-Württemberg, 69120 Heidelberg, Germany.
Multisensory perception produces vast amounts of data requiring efficient processing. This paper focuses on the multisensory example of touch in biological and artificial systems. We integrate philosophical theories of multisensory perception with neuromorphic hardware and demonstrate how classical sensory integration concepts can enhance artificial sensory systems.
View Article and Find Full Text PDFACS Nano
September 2025
International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.
Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.
Introduction: We aimed to clarify the effects of an active touch intervention using different textures on corticospinal excitability.
Methods: A total of 30 healthy individuals participated in the active touch intervention. Two tactile stimuli were used for intervention: smooth (silk) and rough (hessian) stimuli.
Front Robot AI
August 2025
Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, United States.
Multimodal perception is essential for enabling robots to understand and interact with complex environments and human users by integrating diverse sensory data, such as vision, language, and tactile information. This capability plays a crucial role in decision-making in dynamic, complex environments. This survey provides a comprehensive review of advancements in multimodal perception and its integration with decision-making in robotics from year 2004-2024.
View Article and Find Full Text PDFPsychophysiology
September 2025
Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, Universidade do Minho, Braga, Portugal.
Touch has an affective dimension, conveyed through low-threshold mechanoreceptors known as C-tactile (CT) afferents, which are activated by gentle, caress-like contact. While there is evidence that these fibers modulate nociceptive input, their influence on the processing of other somatosensory afferent activity remains largely unknown. In this study, we explored how slow brushing (CT-optimal stimulation) modulates somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve (occurring at 0.
View Article and Find Full Text PDF