Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9092531PMC
http://dx.doi.org/10.1039/d2ob00357kDOI Listing

Publication Analysis

Top Keywords

supramolecular assembly
12
sticky ends
8
assembly process
8
assembly
5
tetraphenylethylene-dna conjugates
4
conjugates influence
4
influence sticky
4
ends dna
4
dna sequence
4
sequence length
4

Similar Publications

Research progress on calixarene/pillararene-based controlled drug release systems.

Beilstein J Org Chem

September 2025

School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.

Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed.

View Article and Find Full Text PDF

In the cardiovascular system, elastic fibres exert a fundamental role providing the long-range elasticity required for physiological functions. Elastic fibres are complex in composition and structure containing, in addition to elastin, a wide range of matrix components, such as microfibrillar proteins, calcium-binding proteins and glycosaminoglycans. Changes in composition and/or structure can affect the biomechanics of the tissue as well as the intrinsic affinity of elastin for Ca ions.

View Article and Find Full Text PDF

Harnessing Radical-Based Dynamic Covalent Chemistry and Supramolecular Synthon for Directional Self-Assembly.

J Am Chem Soc

September 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF