NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries prevention.

Bioact Mater

Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The efficacious delivery of antimicrobial drugs to intractable oral biofilms remains a challenge due to inadequate biofilm penetration and lack of pathogen targeting. Herein, we have developed a microenvironment-activated poly(ethylene glycol) (PEG)-sheddable nanoplatform to mediate targeted delivery of drugs into oral biofilms for the efficient prevention of dental caries. The PEGylated nanoplatform with enhanced biofilm penetration is capable of deshielding the PEG layer under slightly acidic conditions in a PEG chain length-dependent manner to re-expose the bacteria-targeting ligands, thereby facilitating targeted codelivery of ciprofloxacin (CIP) and IR780 to the bacteria after accumulation within biofilms. The nanoplatform tends to induce bacterial agglomeration and suffers from degradation in the acidic oral biofilm microenvironment, triggering rapid drug release on demand around bacterial cells. The self-modulating nanoplatform under near-infrared (NIR) irradiation accordingly displays greatly augmented potency in oral biofilm penetration and disruption compared with drugs alone. Topical oral treatment with nanoplatforms involving synergetic pharmacological and photothermal/photodynamic trinary therapy results in robust biofilm dispersion and efficacious suppression of severe tooth decay in rats. This versatile nanoplatform can promote local accumulation and specific drug transport into biofilms and represents a new paradigm for targeted drug delivery for the management of oral biofilm-associated infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844857PMC
http://dx.doi.org/10.1016/j.bioactmat.2021.10.035DOI Listing

Publication Analysis

Top Keywords

biofilm penetration
12
enhanced biofilm
8
oral biofilms
8
oral biofilm
8
biofilm
6
oral
6
nanoplatform
5
nir-activated nanosystems
4
nanosystems self-modulated
4
self-modulated bacteria
4

Similar Publications

The global antimicrobial resistance crisis demands innovative strategies to combat bacterial infections, including those caused by drug-sensitive pathogens that evade treatment through biofilm formation or metabolic adaptations. Here, we demonstrate that Squama Manitis extract (SME)-a traditional Chinese medicine component-exhibits broad-spectrum bactericidal activity against clinically significant pathogens, including both Gram-positive () and Gram-negative () species (MIC = 31.25 mg/mL), achieving significant reduction in bacterial viability within 24 h.

View Article and Find Full Text PDF

Dual-Functional Microneedles for In Situ Diagnosis and Biofilm-Targeted Therapy of Diabetic Periodontitis via Biomarker-Responsive Probes and Photothermal NO Nanomotors.

Anal Chem

September 2025

Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China.

Chronic periodontitis, a frequent complication of diabetes, is exacerbated by bacterial biofilms that drive progressive periodontal tissue destruction and systemic inflammation. Conventional treatments, utilizing mechanical debridement and systemic antibiotics, often fail to eradicate bacterial biofilms, promote antibiotic resistance, and lack real-time monitoring, leading to suboptimal therapeutic outcomes. Herein, we report a separable bilayer microneedle (MN) patch that enables localized, antibiotic-free, biofilm-targeted therapy and in situ biomarker-based monitoring for the integrated management of chronic periodontitis.

View Article and Find Full Text PDF

Multifunctional PAMAM nanoparticles with sequential antimicrobial-remineralization therapy for dentin caries management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)I-NH (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention.

View Article and Find Full Text PDF

Multidrug resistance (MDR) in bacterial and fungal pathogens poses a growing global health crisis, rendering many conventional antimicrobial therapies ineffective. The rise of MDR strains complicates treatment, prolongs illness, increases healthcare costs, and contributes to higher mortality rates. Mechanisms driving MDR include enzymatic drug inactivation, target modification, efflux pump activity, decreased permeability, and biofilm formation-often fueled by horizontal gene transfer and selective pressure from antimicrobial overuse.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA), characterized by high-level β-lactam resistance and increasing multi-drug resistance, poses a severe and growing global threat to human health and public safety. This review examines MRSA's complex resistance mechanisms, including /-mediated expression of low-affinity PBP2a, regulatory roles of auxiliary genes like and , enzymatic inactivation by β-lactamases and modifying enzymes, efflux pump activity, and biofilm formation. We also systematically review novel therapeutic strategies, such as combination therapies, phage-derived biofilm disruptors, membrane-targeting silver nanoparticles, cell-penetrating antimicrobial peptides, colonization-competitive probiotics, and antibiotic-synergizing phytochemicals.

View Article and Find Full Text PDF