Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reductions in soil productivity and soil water retention capacity, and water scarcity during crop growth, may occur due to long-term suboptimal tillage and fertilization practices. Therefore, the application of appropriate tillage (subsoiling) and fertilization (organic fertilizer) practices is important for improving soil structure, water conservation and soil productivity. We hypothesize that subsoiling tillage combined with organic fertilizer has a better effect than subsoiling or organic fertilizer alone. A field experiment in Henan, China, has been conducted since 2011 to explore the effects of subsoiling and organic fertilizer, in combination, on winter wheat ( L.) farming. We studied the effects of conventional tillage (CT), subsoiling (S), organic fertilizer (OF), and organic fertilizer combined with subsoiling (S+OF) treatments on dry matter accumulation (DM), water consumption (ET), water use efficiency (WUE) at different growth stages, yield, and water production efficiency (WPE) of winter wheat over 3 years (2016-2017, 2017-2018, 2018-2019). We also analyzed the soil structure, soil organic carbon, soil microbial biomass carbon and nitrogen, and soil enzymes in 2019. The results indicate that compared with CT, the S, OF and S+OF treatments increased the proportion of >0.25 mm aggregates, and S+OF especially led to increased soil organic carbon, soil microbial biomass carbon and nitrogen, soil enzyme activity (sucrase, cellulose, and urease). S+OF treatment was most effective in reducing ET, and increasing DM and WUE during the entire growth period of wheat. S+OF treatment also increased the total dry matter accumulation (Total DM) and total water use efficiency (total WUE) by 18.6-32.0% and 36.6-42.7%, respectively, during these 3 years. Wheat yield and WPE under S+OF treatment increased by 11.6-28.6% and 26.8-43.6%, respectively, in these 3 years. Therefore, S+OF in combination was found to be superior to S or OF alone, which in turn yielded better results than the CT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861283PMC
http://dx.doi.org/10.3389/fpls.2021.788651DOI Listing

Publication Analysis

Top Keywords

organic fertilizer
28
subsoiling organic
16
soil
13
soil microbial
12
microbial biomass
12
biomass carbon
12
carbon nitrogen
12
nitrogen soil
12
winter wheat
12
s+of treatment
12

Similar Publications

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

Spatiotemporal characteristics, drivers, sources, and health risks of nitrate and sulfate in groundwater on the Chinese Loess Plateau.

Water Res

September 2025

Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.

Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.

View Article and Find Full Text PDF

The application of manure and straw is beneficial for improving the content and stability of DOM in paddy soil.

J Environ Manage

September 2025

College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:

While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.

View Article and Find Full Text PDF

Source, dynamics, and risks of microplastics and nanoplastics in agricultural groundwater systems.

An Acad Bras Cienc

September 2025

Federal University of Minas Gerais, Department of Sanitary and Environmental Engineering, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-010 Belo Horizonte, MG, Brazil.

Micro- and nanoplastics (MNPs) are emerging contaminants increasingly recognized for their environmental and health implications. While surface water systems have been extensively studied, the presence, behavior, and impacts of MNPs in groundwater remain underexplored, despite its critical role as water source worldwide. The findings in this review highlight that agricultural activities, particularly plastic mulches, pesticides containers, fertilizer bags, greenhouses, are major sources of MNP.

View Article and Find Full Text PDF

Effects of chicken manure-derived black soldier fly organic fertilizer on soil carbon and nitrogen cycling: insights from metagenomic and microbial network analysis.

Environ Res

September 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail

Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.

View Article and Find Full Text PDF