98%
921
2 minutes
20
Root restriction (RR) has been reported to enhance grape berry quality in diverse aspects of grape life. In this study, RR-induced increases in the main primary metabolites in the grape berry and the expression of their related genes were studied at different developmental stages. Mainly the transcriptomic and metabolomic level were analyzed using 'Summer Black' grape berry as a material. The main results were as follows: A total of 11 transcripts involved in the primary metabolic pathways were significantly changed by the RR treatment. Metabolites such as sugars, organic acids, amino acids, starch, pectin, and cellulose were qualitatively and quantitatively analyzed along with their metabolic pathways. Sucrose synthase (, ) and sucrose phosphate synthase () were inferred to play critical roles in the accumulation of starch, sucrose, glucose, and fructose, which was induced by the RR treatment. RR treatment also promoted the malic acid and tartaric acid accumulation in the young berry. In addition, the grape berries after the RR treatment tended to have lower pectin and cellulose content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872613 | PMC |
http://dx.doi.org/10.3390/genes13020281 | DOI Listing |
Plant Physiol Biochem
August 2025
College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:
Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051 Alba, Italy. Electronic address:
Microorganisms colonizing grapevines possess diverse functional capabilities that influence the health, growth, productivity and, consequently, wine quality. In this study, spatial and temporal dynamics of the microbiome of Vitis vinifera cv. Barbera grapevine were determined by shotgun sequencing.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Horticulture, Michigan State University, East Lansing, MI, United States.
Plant growth regulators (PGRs) include natural and synthetic plant phytohormones and other substances with the capacity to shape one or more aspects of plant growth and development at small concentrations. PGRs are commonly utilized in tree fruit and table grape production to reduce fruit set (thinning) and increase fruit size, coloration, and quality. However, use of PGRs in the production of berry crops, such as blueberry, is less common despite the abundance of production issues and the breadth of PGRs generally registered for fruit crops.
View Article and Find Full Text PDFPostharvest diseases, driven by necrotrophic fungi such as , , and , pose a significant threat to global fruit and vegetable supply chains, resulting in annual losses of 20%-40% and economic impacts exceeding $10 billion. This review critically evaluates innovative, sustainable strategies for biological control, nanotechnology, edible coatings, and plant growth regulators (PGRs) to mitigate these losses, emphasizing their mechanisms and efficacy. Biological agents like and reduce disease incidence by 60%-85% through volatile organic compounds (VOCs) and nutrient competition.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
Background: As climate warms, the sugars and secondary metabolites in grapes gradually become uncoupled during development, resulting in the phenomenon of overripe fruit becoming more frequent around the world, especially in some arid regions. However, the key metabolic regulations to grape overripening are still poorly understood. To address this, we conducted a multi-omics study on Cabernet Sauvignon overripe berries over two years, analyzing the non-targeted metabolome, transcriptome, and proteome, aiming to provide a theoretical basis for delayed harvest strategies based on grape quality.
View Article and Find Full Text PDF