Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To present an early warning system (EWS) that employs a supervised machine learning algorithm for the rapid detection of extra-axial hematomas (EAHs) in an emergency trauma setting.

Material And Methods: A total of 150 sets of cranial computed tomography (CT) scans were used in this study with a total of 11,025 images. Of the CTs, 75 were labeled as EAH, the remaining 75 were normal. A random forest algorithm was utilized for the detection of EAHs. The CTs were randomized into two groups: 100 samples for training of the algorithm (split evenly between EAH and normal cases), and 50 samples for testing. In the training phase, the algorithm scanned every CT slice separately for image features such as entropy, moment, and variance. If the algorithm determined an EAH on two or more images in a CT set, then the workflow produced an alert in the form of an email.

Results: Data from 50 patients (25 EAH and 25 controls) were used for testing the EWS. For all CTs with an EAH, an alert was produced, with a 0% false-negative rate. For 16% of the cases, the practitioner received an email from the EWS that the patient might have an EAH despite having a normal CT scan. Positive and negative predictive values were 86% and 100%, respectively.

Conclusion: An EWS based on a machine learning algorithm is an efficient and inexpensive way of facilitating the work of emergency practitioners such as emergency physicians, neuroradiologists, and neurosurgeons.

Download full-text PDF

Source
http://dx.doi.org/10.5137/1019-5149.JTN.35996-21.1DOI Listing

Publication Analysis

Top Keywords

machine learning
12
early warning
8
warning system
8
emergency trauma
8
learning algorithm
8
algorithm
6
eah
6
system machine
4
learning detection
4
detection intracranial
4

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF