Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Factors governing resistance in carbapenem-resistant are manifold. Despite ample research efforts, underlying molecular mechanisms are still only partly understood. Furthermore, little is known on (eco)physiological consequences from resistance acquisition originating from distinct mechanisms in respective bacteria. In this study, we examined physiological adaptation of clinical isolates exhibiting two distinct resistance mechanisms-either carrying a carbapenemase ( = 4, CARB) or alterations in porin-encoding genes ( = 6, POR)-during growth with sublethal concentrations of ertapenem in chemostat culture. Basic growth parameters based on optical density and flow-cytometric analyses as well as global gene expression patterns using RNA-Seq were recorded. We demonstrate that strategies to deal with the antibiotic were distinct between strains of the two groups, where (increased) expression of carbapenemases was the major response in CARB, whereas wide-spread alterations in gene-expression that promoted a survival-like phenotype was observed in POR. The response in POR was accompanied with "costs of resistance" resulting in reduced growth efficiencies compared with CARB that are intrinsic to that group and were also observed during growth without antibiotic challenge, however, at lower levels. All strains showed similar minimal inhibitory concentrations and did not form phylogenetic groups, indicating that results cannot be attributed to distinct resistance levels or phylogenetic relationships, but are indeed based on the resistance mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841762PMC
http://dx.doi.org/10.3389/fmicb.2021.812544DOI Listing

Publication Analysis

Top Keywords

resistance mechanism
8
physiological adaptation
8
growth sublethal
8
sublethal concentrations
8
distinct resistance
8
resistance
6
growth
5
mechanism governs
4
governs physiological
4
adaptation growth
4

Similar Publications

Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.

View Article and Find Full Text PDF

Long non-coding RNAs: Silent contributors to plant survival under abiotic stress.

Biochem Biophys Res Commun

September 2025

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:

Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.

View Article and Find Full Text PDF

Remodeling the sarcoma microenvironment by simultaneous targeting of urokinase-type plasminogen activator receptors and epidermal growth factor receptors to promote antitumor activity.

J Pharmacol Exp Ther

August 2025

Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology

We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.

View Article and Find Full Text PDF

DeepMobilome: predicting mobile genetic elements using sequencing reads of microbiomes.

Brief Bioinform

September 2025

Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.

Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.

View Article and Find Full Text PDF

Ferroptosis resistance is a key player in cervical cancer (CC) development. Hypoxia is a negative factor affecting CC treatment by inducing ferroptosis resistance. Our study aimed to investigate the detailed mechanisms of hypoxia-induced ferroptosis resistance in CC cells.

View Article and Find Full Text PDF