Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recently released revised vancomycin consensus guideline endorsed area under the concentration-time curve (AUC) guided monitoring. Means to AUC-guided monitoring include pharmacokinetic (PK) equations and Bayesian software programs, with the latter approach being preferable. We aimed to evaluate the predictive performance of these two methods when monitoring using troughs or peaks and troughs at varying single or mixed dosing intervals (DIs), and evaluate the significance of satisfying underlying assumptions of steady-state and model transferability. Methods included developing a vancomycin population PK model and conducting model-informed precision dosing clinical trial simulations. A one-compartment PK model with linear elimination, exponential between-subject variability, and mixed (additive and proportional) residual error model resulted in the best model fit. Conducted simulations demonstrated that Bayesian-guided AUC can, potentially, outperform that of equation-based AUC predictions depending on the quality of model diagnostics and met assumptions. Ideally, Bayesian-guided AUC predictive performance using a trough from the first DI was equivalent to that of PK equations using two measurements (peak and trough) from the fifth DI. Model transferability diagnostics can guide the selection of Bayesian priors but are not strong indicators of predictive performance. Mixed versus single fourth and/or fifth DI sampling seems indifferent. This study illustrated cases associated with the most reliable AUC predictions and showed that only proper Bayesian-guided monitoring is always faster and more reliable than equations-guided monitoring in pre-steady-state DIs in the absence of a loading dose. This supports rapid Bayesian monitoring using data as sparse and early as a trough at the first DI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010252PMC
http://dx.doi.org/10.1111/cts.13210DOI Listing

Publication Analysis

Top Keywords

predictive performance
12
pharmacokinetic equations
8
model
8
model-informed precision
8
precision dosing
8
trial simulations
8
model transferability
8
bayesian-guided auc
8
auc predictions
8
monitoring
7

Similar Publications

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the predictive accuracy of Paediatric Risk of Mortality-III, Paediatric Index of Mortality-II, and Paediatric Logistic Organ Dysfunction scoring systems for major adverse events following congenital heart surgery.

Methods: This prospective observational study included patients under 18 years of age who were admitted to the ICU for at least 24 hours postoperatively following congenital heart surgery. Major adverse events were defined as a composite of 30-day mortality, ICU readmission, reintubation, acute neurologic events, requirement for extracorporeal membrane oxygenation, cardiac arrest requiring cardiopulmonary resuscitation, need for a permanent pacemaker, acute kidney injury, or unplanned reoperation.

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF