Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates.

Methods: We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel.

Results: 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), (, 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with and a virus were consistently associated with increased load.

Conclusions: Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral- facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845514PMC
http://dx.doi.org/10.1101/2022.02.04.22270474DOI Listing

Publication Analysis

Top Keywords

respiratory pathogens
16
cross-sectional study
8
pathogen-pathogen interactions
8
pathogen load
8
samples positive
8
potential pathogen
8
viral load
8
samples
6
interactions
4
interactions respiratory
4

Similar Publications

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF

Gut dysbiosis and an increased risk of respiratory infection in type 2 diabetes have been well recognised. However, the relationship between the gut and respiratory pathobionts carriage rate in the Type 2 diabetic Malaysian population is understudied. To address the knowledge gap, we profiled the gut and upper respiratory tract microbial composition, as well as the urine metabolome of 31 type 2 diabetic adults and 14 non-diabetes adults.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Introduction: Feline herpesvirus type 1 (FHV-1) is a primary pathogen causing feline upper respiratory tract diseases (FURTD), but its impact on the upper respiratory tract microbiota remains unclear. This study aimed to evaluate the impact of FHV-1 infection on the upper respiratory tract microbiota by comparing the microbial composition between FHV-1-positive group with FHV-1-negative group.

Methods: The microbial diversity in the upper respiratory tract of FHV-1-positive cats ( = 8) were analyzed using 16S rRNA high-throughput sequencing, and then this diversity was compared with that in healthy FHV-1-negative controls ( = 4).

View Article and Find Full Text PDF

Introduction: The emergence of highly virulent strains of the porcine reproductive and respiratory syndrome virus has driven the need for new vaccines. This study evaluates the efficacy of an intranasal (IN) vaccine composed of a naturally attenuated PRRSV-2 isolate, compared to a commercially available intramuscularly administered (IM) PRRSV-1 vaccine, against a heterologous challenge with a highly virulent PRRSV-1 strain (R1).

Methods: Sixty-eight PRRSV-naïve pigs were divided into four groups: two non-vaccinated controls (NV/NCh, NV/Ch), one IM-vaccinated with a PRRSV-1 MLV (Por), and one intranasally (IN)-vaccinated with the PRRSV-2 vaccine (IL).

View Article and Find Full Text PDF