Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host-pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835742PMC
http://dx.doi.org/10.3390/ijms23031575DOI Listing

Publication Analysis

Top Keywords

metabolomics approach
12
approach identified
12
dogs infection
8
canine babesiosis
8
serum metabolome
8
dogs naturally
8
naturally infected
8
mass spectrometry
8
healthy dogs
8
uhplc-ms/ms metabolomics
8

Similar Publications

Methods for experimentally increasing circulating acyl-CoA-binding protein (ACBP) levels in mice under chronic restraint stress.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.

Chronic restraint stress (CRS) is a widely recognized model to study stress-induced anorexia and metabolic dysregulation in mice. Acyl-coenzyme A-binding protein (ACBP) has emerged as a critical player in metabolic regulation, with potential implications for stress-related disorders. This study presents two complementary methodologies to artificially elevate circulating Acyl-CoA-binding protein (ACBP) levels in mice under CRS.

View Article and Find Full Text PDF

Machine learning in allergy research: A bibliometric review.

Immunol Lett

September 2025

National Heart and Lung Institute, Imperial College London, UK; School of Public Health, Faculty of Medicine, Imperial College London, UK.

The emergence of big data and analytic approaches initiated research efforts to characterise different subtypes of allergic diseases, including tracking disease progression and identifying patterns that may offer insight into their development and progression. Triangulation from different data sources and study types may help to elucidate the directionality of relationships between variables at a very individual level by modelling the complex interdependencies between multiple dimensions (e.g.

View Article and Find Full Text PDF

Background: The gut-liver axis, pivotal in managing glucose balance and insulin responsiveness, is central to the development of type 2 diabetes mellitus (T2DM). Research has highlighted the regulatory effects of dietary alpha-linolenic acid (ALA), but it remains unclear how ALA modulates gut microbiota and liver inflammation in T2DM.

Purpose: This study aimed to systematically investigate ALA's influence on liver inflammation, intestinal barrier integrity, gut microbial composition, and metabolic homeostasis in T2DM, with a focus on the underlying molecular mechanisms.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

Serum Lipidomics Profiling to Identify Potential Biomarkers of Ischemic Stroke: A Pilot Study in Chinese Adults.

Biomed Environ Sci

August 2025

Department of Epidemiology, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China;Taixing Second People's Hospital, Suzhou Medical College of Soochow University, Taizhou 225400, Jiangsu, China.

Objective: Lipid oxidation is involved in the pathogenesis of atherosclerosis and may be contribute to the development of Ischemic stroke (IS). However, the lipid profiles associated with IS have been poorly studied. We conducted a pilot study to identify potential IS-related lipid molecules and pathways using lipidomic profiling.

View Article and Find Full Text PDF