Host MOV10 is induced to restrict herpes simplex virus 1 lytic infection by promoting type I interferon response.

PLoS Pathog

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880913PMC
http://dx.doi.org/10.1371/journal.ppat.1010301DOI Listing

Publication Analysis

Top Keywords

hsv-1 replication
20
mov10
14
type ifn
12
mov10 induced
8
induced restrict
8
herpes simplex
8
simplex virus
8
lytic infection
8
infection promoting
8
promoting type
8

Similar Publications

Marine-derived sulfated glycans display a potent virostatic mechanism to block herpes simplex virus type-1 (HSV-1) entry and spread.

Carbohydr Polym

November 2025

Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.. Electronic address:

A naturally derived library of glycomimetic mimicking the structure-function of heparan sulfate (HS) remains an untapped reservoir for drug discovery against viral infections. In this work we screened a library of marine-derived sulfated glycans from seaweeds and sea cucumbers to investigate if they can compete for the ligand/receptor binding sites to prevent virus entry. Multiple promising candidates were identified, such as RPI-27 (IC: 1.

View Article and Find Full Text PDF

Antagonizing Viral MicroRNAs Reduces Ocular HSV-1 Pathogenesis and Enhances Mucosal Immune Homeostasis.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States.

Purpose: Herpes simplex virus 1 (HSV-1) is a globally prevalent pathogen that causes recurrent lesions at mucosal and cutaneous sites, including the cornea, leading to herpetic keratitis, a major cause of infectious blindness. While HSV-1-encoded microRNAs (v-miRs) are known to regulate viral latency and immune evasion, their role in acute mucosal infection remains unclear. This study investigates the function of v-miRs during acute HSV-1 infection of the cornea.

View Article and Find Full Text PDF

In the Absence of Type-1 IFN, HSV-1 LAT Increases γ34.5 Expression and Enhances Mortality in Infected Mice.

Viruses

July 2025

Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC-SSB3, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.

Type-I Interferon (IFN) is essential for antiviral immunity in both mice and humans; thus, we investigated whether LAT affects HSV-1 infectivity in the absence of IFN by infecting IFNαβR and wild-type control mice with HSV-1 McKrae (LAT-plus) and dLAT2903 (LAT-minus) viruses. IFNαβR mice survived ocular infection with the LAT-plus virus, while no infected mice survived infection with the LAT-minus virus. Increased death in infected mice correlated with a higher expression in the neurovirulence γ34.

View Article and Find Full Text PDF

Acute human alpha-herpesvirus 1 (HSV-1) infection culminates in a latent infection of neurons in trigeminal ganglia (TG) and the central nervous system. Following infection of mucosal epithelial cells, certain neurons survive infection and life-long latency is established. Periodically, stressful stimuli trigger reactivation from latency, which result in virus shedding, transmission to other people, and, occasionally, recurrent disease.

View Article and Find Full Text PDF

We report a case of herpes simplex virus type 1 (HSV-1) anterior uveitis evolving into an acute iris transillumination-like syndrome with secondary pigmentary glaucoma, highlighting diagnostic challenges and treatment considerations. A 61-year-old immunocompetent woman presented with unilateral anterior uveitis characterized by keratic precipitates and mild anterior chamber inflammation. The condition was initially treated with topical and subconjunctival corticosteroids without antiviral therapy.

View Article and Find Full Text PDF