Design, synthesis and structural-activity relationship studies of phanginin A derivatives for regulating SIK1-cAMP/CREB signaling to suppress hepatic gluconeogenesis.

Eur J Med Chem

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. Electronic address:

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Persistent activation of hepatic gluconeogenesis is a main cause of fasting hyperglycemia in patients with type 2 diabetes (T2D), and the salt-induced kinase 1 (SIK1) acts as a key modulator in regulating hepatic gluconeogenesis. Recently, we first reported phanginin A (PA, 1), a natural cassane diterpenoid isolated from the seeds of Caesalpinia sappan, exhibited potent anti-diabetic effect through activation of SIK1 and increasing PDE4 activity to inhibit hepatic gluconeogenesis pathway by suppressing the cAMP/PKA/CREB pathway in the liver. In present study, we designed and prepared 25 PA derivatives and their structure-activity relationship (SAR) for gluconeogenesis inhibitory activity were established. Among them, compound 7 exhibited remarkable inhibitory activity on hepatic gluconeogenesis by enhancing the SIK1 phosphorylation and ameliorated the hyperglyceamia of type 2 diabetic mice. Our results supported that compound 7 could be served as a potential candidate for the treatment of T2D.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114171DOI Listing

Publication Analysis

Top Keywords

hepatic gluconeogenesis
20
inhibitory activity
8
gluconeogenesis
6
hepatic
5
design synthesis
4
synthesis structural-activity
4
structural-activity relationship
4
relationship studies
4
studies phanginin
4
phanginin derivatives
4

Similar Publications

Feeding of high-quality hay modulates hepatic lipid and energy metabolism in weaned dairy calves.

JDS Commun

September 2025

Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.

The present study aimed to investigate the effects of feeding different hay qualities with or without concentrate supplementation on the mRNA expression of genes related to hepatic lipid and glucose metabolism and cellular energy status in weaned calves. Holstein Friesian calves (5 per dietary group) were fed 4 solid diets: (1) 100% medium-quality hay (MQH; 9.4 MJ of ME, 149 g CP, 522 g NDF/kg of DM); (2) 100% high-quality hay (HQH; 11.

View Article and Find Full Text PDF

Transcription factors are significant regulators of gene expression in most biological processes related to diabetes, including beta cell (β-cell) development, insulin secretion and glucose metabolism. Dysregulation of transcription factor expression or abundance has been closely associated with the pathogenesis of type 1 and type 2 diabetes, including pancreatic and duodenal homeobox 1 (), neurogenic differentiation 1 (), and forkhead box protein O1 (). Gene expression is regulated at the transcriptional level by transcription factor binding, epigenetically by DNA methylation and chromatin remodelling, and post-transcriptional mechanisms, including alternative splicing and microRNA (miRNA).

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF

Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.

View Article and Find Full Text PDF

Ruminants rely on hepatic gluconeogenesis to support whole-body glucose metabolism and to supply glucose for lactose synthesis. Understanding the effect of plane of nutrition before parturition on the capacity for hepatic gluconeogenesis in dairy cows may provide a basis for improved cow health and productivity in the subsequent lactation. Our objectives were to determine the effects of far-off (FO) dry period diet, close-up (CU) period diet, and their interaction on adaptations in metabolism of gluconeogenic substrates (Ala and propionate) in liver slices.

View Article and Find Full Text PDF