Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microvascular imaging is an advanced Doppler ultrasound technique that detects slow flow in microvessels by suppressing clutter signal and motion-related artifacts. The technique has been applied in several conditions to assess organ perfusion and lesion characteristics. In this pictorial review, we aim to describe current knowledge of the technique, particularly its diagnostic utility in the infant brain, and expand on the unexplored but promising clinical applications of microvascular imaging in the brain with case illustrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993979PMC
http://dx.doi.org/10.1259/bjr.20211051DOI Listing

Publication Analysis

Top Keywords

microvascular imaging
12
current understanding
4
understanding future
4
future potential
4
potential applications
4
applications cerebral
4
cerebral microvascular
4
imaging infants
4
infants microvascular
4
imaging advanced
4

Similar Publications

Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.

View Article and Find Full Text PDF

Adhesive materials are widely used in microvascular decompression for treating neurovascular compression syndromes. They play an important role in the critical step of vessel fixation. Recently, completely autologous fibrin glue produced solely from a patient's own plasma was developed.

View Article and Find Full Text PDF

Protocol for live-cell calcium imaging of human lung microvascular endothelial vessel-on-a-chip model.

STAR Protoc

September 2025

Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical C

Calcium signaling is crucial for endothelial cell homeostasis. Alterations in intracellular calcium levels due to shear stress are linked to vascular dysfunction and diseases. Here, we present a protocol to perform live calcium imaging by using a live calcium indicator on human lung endothelial cells subjected to shear stress in a commercially available microfluidic device (Ibidi Luer VI).

View Article and Find Full Text PDF

Background: Ischemia with non-obstructive coronary arteries (INOCA) represents a diagnostic and therapeutic challenge, often related to coronary microvascular dysfunction (CMD). Identifying non-invasive electrocardiographic markers that predict ischemia in this population remains a clinical priority. P-wave peak time (PWPT), reflecting atrial conduction delay, has been linked to ischemic pathophysiology.

View Article and Find Full Text PDF

Transcranial ultrasound localization microscopy of the rat brain with ray theory-based aberration correction.

Ultrasonics

August 2025

College of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200438, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China. Electronic address:

Transcranial ultrasound localization microscopy (t-ULM) is faced with challenges posed by the skull, including acoustic attenuation and phase aberrations. There is a significant request for an efficient aberration correction method achieving a great balance between computational complexity and accuracy. In this study, the ray theory is first applied to in-vivo transcranial imaging to calculate the traveltime table in the inhomogeneous medium model of the imaging region.

View Article and Find Full Text PDF