Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning.

Carbohydr Polym

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China. Electronic address:

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At present, the orderly assembly of bio-cellulose nanofibers (CNFs) with excellent mechanical properties in a simple and continuous manner still remains a challenge. Here, we propose a strategy of combining a wet spinning process with a self-made grading-stretching device to realize the continuous preparation of high-performance bacterial cellulose (BC) macrofibers. The macrofiber obtained by one-stage stretching at the optimum stretching ratio of 40% achieves the Young's modulus of 19.8 GPa and tensile strength of 544.5 MPa. Under two-stage stretching, wide-angle X-ray (WXRD) diffraction analysis revealed that the second orientation of nanofibers shows a higher degree of orientation than that under one-stage stretching. The maximum Young's modulus and tensile strength of the macrofiber can reach 33.2 GPa and 659.8 MPa, respectively, which are higher than most CNFs macrofibers obtained by spinning and post-stretching. This research is expected to provide a significant reference for the industrial spinning of nanocellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119133DOI Listing

Publication Analysis

Top Keywords

high-performance bacterial
8
bacterial cellulose
8
cellulose macrofibers
8
one-stage stretching
8
young's modulus
8
tensile strength
8
continuous high-performance
4
macrofibers implementing
4
implementing grading-stretching
4
spinning
4

Similar Publications

Ethanol-mediated freeze-drying enables robust bacterial cellulose aerogels for enhanced drug loading and hemostasis dressing.

Carbohydr Polym

November 2025

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China. Electronic address:

This work reports an ethanol-mediated freeze-drying (EMFD) strategy that enables the scalable production of high-performance bacterial cellulose aerogels (BCAs), effectively addressing key limitations of conventional methods such as supercritical drying and standard freeze-drying, including fragility, low mechanical strength, and high cost. Specifically, by replacing water in bacterial cellulose hydrogels (BCHs) with ethanol-water solution (EWs) prior to freeze-drying, the process limits ice crystal formation and reduces capillary forces and adhesion, thereby preserving structural integrity and enhancing mechanical properties. The effects of EWs concentration on BCA morphology, volume shrinkage, mechanical strength, and pore structure were systematically investigated.

View Article and Find Full Text PDF

Lactic acid bacteria and yeast co-culture system: Mechanism of quorum-sensing regulation on the high yield of exopolysaccharides in Weissella confusa.

Int J Biol Macromol

September 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life

The low yield of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) restricts their industrial application. To overcome this limitation, a single-factor optimization strategy was applied to develop co-culture system involving Weissella confusa P2 and Candida shehatae. This approach resulted in 48.

View Article and Find Full Text PDF

Oral diseases affect more than 3.5 billion people globally, representing a major public health burden, particularly in low- and middle-income countries where access to dental care is often limited. Furthermore, the use of conventional antimicrobial agent may cause side effect.

View Article and Find Full Text PDF

Smart thin porous calcium phosphate coatings for local antibiotic delivery.

BMC Res Notes

September 2025

G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg Medical Center, Hugstetter Straße 55, 79106, Freiburg, Germany.

Objective: Implant failure after arthroplasty, primarily due to aseptic loosening or periprosthetic joint infection, remains a significant clinical problem. Bioactive ceramic coatings, such as β-tricalcium phosphate (β-TCP), enhance osseointegration and may reduce the risk of aseptic loosening. At the same time, localized antibiotic release from the implant surface represents a promising strategy to prevent early bacterial colonization.

View Article and Find Full Text PDF

Ensuring biostable drinking water is a growing priority for drinking water utilities, especially in non- or minimally chlorinated distribution systems where microbial regrowth is controlled through nutrient limitation. In this study, we evaluated the efficacy of ultrafiltration (UF) and nanofiltration (NF) in reducing total organic carbon (TOC) and their impact on the microbiology in a pilot-scale drinking water distribution system over 7 weeks. NF achieved significantly higher TOC removal (75.

View Article and Find Full Text PDF