Role of extracellular signal-regulated kinase in rubrofusarin-enhanced cognitive functions and neurite outgrowth.

Biomed Pharmacother

Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Memory-enhancing agents have long been required for various reasons such as for obtaining a good score in a test in the young and for retaining memory in the aged. Although many studies have found that several natural products may be good candidates for memory enhancement, there is still a need for better agents. The present study investigated whether rubrofusarin, an active ingredient in Cassiae semen, enhances learning and memory in normal mice. Passive avoidance and Morris water maze tests were performed to determine the memory-enhancing ability of rubrofusarin. To investigate synaptic function, hippocampal long-term potentiation (LTP) was measured. Western blotting was performed to determine protein levels. To investigate neurite outgrowth, DCX immunohistochemistry and cell culture were utilised. Rubrofusarin (1, 3, 10, 30 mg/kg) enhanced memory in passive avoidance and Morris water maze tests. Moreover, rubrofusarin ameliorated scopolamine-induced memory impairment. In the rubrofusarin-treated group, high-frequency stimulation induced higher LTP in the hippocampal Schaffer-collateral pathway compared to the control group. The rubrofusarin-treated group showed a higher number of DCX-positive immature neurons with an increase in the length of dendrites compared to the control group in the hippocampal dentate gyrus region. In vitro experiments showed that rubrofusarin facilitated neurite outgrowth in neuro2a cells through extracellular signal-regulated kinase (ERK). Finally, we found that extracellular signal-regulated kinase (ERK) is required for rubrofusarin-induced enhancement of neurite outgrowth, learning and memory. These results demonstrate that rubrofusarin enhances learning and memory and neurite outgrowth, and these might need activation of ERK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.112663DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
20
extracellular signal-regulated
12
signal-regulated kinase
12
learning memory
12
enhances learning
8
passive avoidance
8
avoidance morris
8
morris water
8
water maze
8
maze tests
8

Similar Publications

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

Stable apelin-13 analogues promote cell proliferation, differentiation and protect inflammation induced cell death.

Mol Cell Neurosci

September 2025

Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:

Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.

View Article and Find Full Text PDF