Hyperexcitability and Homeostasis in Fragile X Syndrome.

Front Mol Neurosci

Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770333PMC
http://dx.doi.org/10.3389/fnmol.2021.805929DOI Listing

Publication Analysis

Top Keywords

fxs
9
fragile syndrome
8
phenotypes fxs
8
plasticity
5
hyperexcitability
4
hyperexcitability homeostasis
4
homeostasis fragile
4
syndrome fragile
4
syndrome fxs
4
fxs leading
4

Similar Publications

Fragile X syndrome (FXS), a leading inherited cause of intellectual disability and autism, is frequently accompanied by sleep and circadian rhythm disturbances. In this study, we comprehensively characterized these disruptions and evaluated the therapeutic potential of a circadian-based intervention in the fragile X mental retardation 1 () knockout (KO) mouse. The KO mice exhibited fragmented sleep, impaired locomotor rhythmicity, and attenuated behavioral responses to light, linked to an abnormal retinal innervation and reduction of light-evoked neuronal activation in the suprachiasmatic nucleus.

View Article and Find Full Text PDF

FMR1 mutant marmosets show fragile X syndrome phenotypes.

Cell Rep

August 2025

Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:

Fragile X syndrome (FXS) is the foremost monogenic cause of autism spectrum disorder and intellectual disability, caused by FMR1 gene silencing. Here, we report that common marmosets carrying FMR1 mutation, a non-human primate model for FXS, share common features in behavioral and molecular phenotypes with patients with FXS. Founder mutants with markedly reduced fragile X messenger ribonucleoprotein expression display hyperactivity, spontaneous seizures, and transcriptome changes in synapse-related genes that overlap with those reported in patients with FXS.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Unlabelled: Fragile X syndrome (FXS), the most common monogenic neurodevelopmental disorder associated with autism and intellectual disability, results from the loss of expression of the gene. Synaptic and circuit-level abnormalities are well documented in FXS and extensively studied in the KO mouse model. In CA1 hippocampal neurons functional, molecular and structural synaptic changes have been described yet the canonical form of Hebbian CA1 long term potentiation (LTP) remains intact in KO mice.

View Article and Find Full Text PDF

The neurodevelopmental disorder fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene, which prevents production of the FMRP protein. FMRP modulates the expression and function of a variety of proteins, including voltage-gated ion channels, such as hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders such as FXS.

View Article and Find Full Text PDF